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1. Introduction

Positive systems appear in various models that are composed
of interconnected subsystems, where each subsystem presents
a compartment. Compartments exchange variable nonnegative
quantities of material with conservation laws describing transfer,
accumulation, and outflows between compartments and the
environment [1]. Transfers between the compartments have to
account time for material, energy, or information in transit
between the compartments. This leads to analysis of delay systems
of the following form

X (0) + Ao(0)x(0) + > A(Dx(t — B (1)) = 0,
k=1

t € [0, +00), (1.1)
x(€)=9’), §<0, (1.2)
where ¢ (—=00,0) — R" is a given continuous n-vector

function, defining what can be substituted into the equation for
t— () < 0.A) = {ai}, , .k = 0...mare
n x n matrices with bounded piecewise continuous entries, x(t) =
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col{x1(t), ..., x,(t)} € R"is n-vector with absolutely continuous
components, the delays 6,(t) are measurable bounded functions
fork=1,...,m.

In this paper, we deal with the positivity-based stability
analysis of (1.1). This approach was started in [2], and was further
developed in [3-7]. For difference and delay differential systems
this approach was developed in [8-11,6,1,12-18]. For applications
of this approach to additive neural networks see [19,13]. In all
the above works that treat (1.1) it is assumed that there is a non-
delayed term Aq(t)x(t) with positive terms on the main diagonal
of Ag. These diagonal terms should be sufficiently large in order
to achieve dominance of the main diagonal of the matrix Ag
over all the other terms (see, for example, the condition (5) of
Theorem 3.1 in [1] and condition (iii) of Theorem III. I in [16]).
Such an assumption can be interpreted as follows: the diagonal
ordinary differential equations describing every compartment,
should be exponentially stable, and interconnections between
different compartments should be sufficiently weak in order not
to destabilize the system (1.1).

The approaches of above papers are not applicable to
stabilization of an open-loop unstable system

X (0) + Ag(OX(0) + Y AcDX(E — B()) = u(b),

k=1
t € [0, +00), (1.3)
by the delayed feedback u(t) = — ka=1 B(t)x(t — t(t)), with

() > O(t) > Ofort € [0,400),k = 1,..., m. The latter
inequality may naturally appear in applications. The presence of
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time-delay in the control input may destabilize the closed-loop
systems, as pointed out, for example, in [20,21,7]. One of the
popular approaches used to cope with delays in the input is the
predictor-based approach (see e.g. [22]). Recent developments in
this area were presented in [23]. Another way to cope with delays
in the input is to reduce systems of the delay differential equations
to systems of “integral equations” (see, for example, [24,4] and
the references therein). This approach allows to deal with variable
delays and coefficients leading to simple stability conditions in
a form of inequalities. Based on this approach the positivity-
based stability analysis-results were provided in [25-28], where
a smallness of delays on the main diagonal was assumed instead of
their absence (see, for example, Proposition 2.3). Positivity-based
stability of neutral systems with small delays on the main diagonal
was considered in [25,29,17] see also the recent paper [30]. Results
on stability of systems with distributed delay can be found, for
example, in [31,18], where “smallness of delays” on the main
diagonal is also assumed.

In the present paper, for the first time, the stability conditions
for systems with large time-varying delays are provided under
assumption of the closeness of the delays instead of the delays’
smallness. Theorems 3.2 and 3.3 present sufficient conditions for
the exponential stability in this case. Theorem 3.4 generalizes to
systems with large delays the classical theorem about equivalence
of the exponential stability, existence of positive solution to
a system of linear algebraic inequalities and the fact that a
matrix constructed from the coefficients is Hurwitz for system
of ordinary differential equations with Metzler matrix (see
Definition 2.2 and Proposition 2.2). The presented approach allows
to stabilize unstable state-delay systems by feedback with large
input delays. The corresponding result is proved under assumption
about nonoscillation of the “diagonal” scalar delay equations in
Theorem 3.5. A principal possibility to achieve stabilization of
system (3.22) (see below) by the feedback control (3.23), where
the delays 7;(t) are greater than the state delays 6;(t) of (3.22),
is formulated in Corollaries 3.1 and 3.2. The stability results are
formulated in terms of inequalities on the delays and on the
coefficients.

The present paper is organized as follows. In Section 2, we
discuss positivity-based methods in the stability analysis. In
Section 3, we formulate our main results. In Section 4, the proofs
of the main results are given.

Notations: Throughout the paper e denotes the Euler number.
Lo is the space of essentially bounded measurable functions y :
[0, +00) — R.Fory € Ly denote y* = esssup,.oy(t),ys« =
essinfr-oy(t) and for y* € Lok = 1,...,m) — y"(t) =

2. Preliminaries on positivity and stability of time-delay
systems

Consider the non-homogeneous system

X (6) = Y AOX(E — O(0) = f (1), t €0, +00),

k=1
x(§)=0, §<0,
where A (t) = {aji(t) }I_],:l _ are n x nmatrices with entries aj €
Loo, Ok € Lo fork = 1,...,m, f(t) = col{f1(t),...,.fa(O}, fi €
Lo, for i = 1,...,n. The components x; [0,400) — R
of the vector x = col{xy, ..., x,}, are assumed to be absolutely
continuous and their derivatives x; € Lu. A vector-function x is

a solution of (2.1) if it satisfies system (2.1) for almost all t €
[0, +00).

(2.1)

(2.2)

It was explained in [24] that without loss of generality, the
zero initial condition (2.2) can be considered instead of (1.2). The
homogeneous system

X(0) = > AdDX(E = 0(1) =0, t &[0, +00), (2.3)
k=1

with initial function defined by (2.2), has n-dimensional space of
solutions [24] and this fact is the basis of solutions’ representations
which will be used below.

Let us define the Cauchy matrix C(t,s) = {G;(t, 5)},',1:1 """ . as
follows [24]. For every fixed s > 0, as a function of the variable t, it
satisfies the matrix equation

Cl(t,5) =D ADC(t — O (D), 5), €[5, +00), (2.4)
k=1

where

CE,s) =0, for& <, (2.5)

and

C(s,s)=1. (2.6)

I is the unit matrix. The general solution of system (2.1), (2.2) can
be represented in the form [24]

t
x(r):/ C(t, s)f (s)ds + C(t, 0)x(0). 2.7)
0

Definition 2.1. The Cauchy matrix C(t,s) is said to satisfy the
exponential estimate if there exist positive numbers N and « such
that

|Ci(t.9)| = Nexp{—a(t -5}, ij=1....n

0<s<t < +4oo. (2.8)

In this case we say that (2.3) is exponentially stable.

Our main results will be based on the following extension of the
classical Bohl-Perron theorem:

Proposition 2.1 ([4]). In the case of bounded delays 0,(t) and
coefficients in the matrices Ai(t) (k = 1,...,m), the fact that
for every bounded right-hand side f(t) = col{fi(t),...,f.(t)},
the solution x(t) = col{xi(t),...,x,(t)} of system (2.1) is
bounded on the semiaxis [0, +00) is equivalent to the exponential
estimate (2.8) of the Cauchy matrix C(t, s).

T. Wazewski [5] proved that for system of ordinary differential
equations x'(t) = A(t)x(t) the nonnegativity of all off-diagonal
elements of A(t)

a;j(t) >0 fori#j, i,j=1,...,n, t €[0,+00), (2.9)

is necessary and sufficient for the nonnegativity of all entries of the

Cauchy matrix C(t, s) = {Cy(t, s)}”,:1 _of the system.

Definition 2.2. The matrix A is Metzler if all its off-diagonal
elements are nonnegative for t > 0, i.e. (2.9) is fulfilled.

The fact that all matrices Ax(t) are Metzler together with
the smallness of diagonal delays (see condition (2.12)) implies
Gj(t,s) > 0for0 <s <t < 400, i,j = 1,...,n[2526]. In
Theorems 3.1 and 3.2 of the present paper, we propose new as-
sumptions on the diagonal delay differential equations (actually,
nonoscillation of their solutions), which together with the condi-
tion that the matrices A, (t) are Metzler, imply the nonnegativity of
C(t,s).
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