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a b s t r a c t

This paper addresses the synchronization problem of coupled harmonic oscillators by event-triggered
control. A centralized event-triggered control strategy is first developed and is further extended to a
decentralized counterpart, in which the control protocol and event-triggering conditions only require
local information. With the event-triggered control strategies, controllers update at the discrete instants
when the relatedmeasurement errors exceed some proper state-dependent thresholds, which can reduce
the computation and transmission costs. By the tools from nonsmooth analysis, it is shown that the
proposed event-triggered control strategies synchronize asymptotically all oscillator states. Furthermore,
a decentralized event-triggered strategy with a fixed threshold is proposed for the sake of excluding the
Zeno behavior. The effectiveness of the proposed strategies is illustrated by numerical simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many complex systems in nature exhibit synchronized behav-
ior, such as fireflies’ flashing or crickets’ chirping. The interac-
tion mechanisms of synchronization have been extensively stud-
ied in different disciplines [1,2]. The synchronization of coupled
harmonic oscillators is an important subject in the study of syn-
chronization phenomena (see e.g., [3–7]).

Recently, researchers from control community have developed
several control algorithms to drive groups of coupled harmonic
oscillators into state synchronization. In general, these control
algorithms can be categorized into continuous algorithms [3,7,8]
and discontinuous algorithms [9–11]. Note that these existing
algorithms depend on that the agents should have continuous
or periodic access to information from neighboring agents which
may lead to inefficient utilization of energy and communication
bandwidth. Most recently, event-triggered control has become a
promising alternative to reduce the usage of system resources
[12–16]. With the event-triggered control, the sampled data are
sent to controllers only when the measurement errors exceed
some predefined thresholds, which often depend on system states.
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In this paper, the event-triggered control strategies are
proposed to implement the synchronization of coupled harmonic
oscillators with low resource costs. The states of coupled harmonic
oscillators are time-varying and periodically oscillating evenwhen
the synchronization is achieved. The measurement errors do not
converge to zero while the state-dependent thresholds tend to
zero. In such a case, the Zeno triggeringmay exist under the event-
triggered control. Thus, under the event-triggered control, we shall
answer the following questions: How to define the solution of
the event-triggered system; how to analyze the synchronization
behavior of oscillators. This paper mainly concentrates on the two
problems. Furthermore, an event-triggered strategy with a fixed
triggering threshold is proposed to exclude the Zeno behavior.

The main contributions of this paper are summarized as fol-
lows: (i) The event-triggered algorithms are proposed for the first
time to synchronize a group of coupled harmonic oscillators. (ii)
The tools of nonsmooth analysis are used in the mathematical
treatments. Since the investigated closed-loop system is discontin-
uous on the right-hand side, the classical solutionsmay not exist in
such a case and the closed-loop system may also exhibit the Zeno
behavior. However, one can still define suitable solutions for these
systems in the framework of nonsmooth analysis [17,18]. The lit-
erature [17–20], using the theory of nonsmooth analysis, has pro-
vided new approaches to tackle the discontinuous systems and has
shown that the mathematical analysis is effective.

Notation. Rn is the Euclidean space with n-dimensions. Rm×n

denotes the set of m × n real matrices and In denotes the
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n-dimensional identitymatrix. For amatrix A, ∥A∥ is the induced 2-
norm. Let 1n = [1, 1, . . . , 1]T . Let B(x, δ) be an open ball centered
at xwith radius δ, cobe the convex closure andµ(·)be the Lebesgue
measure. A continuous function f : [0, a) → R, a > 0, belongs to
the class of K function if it is strictly increasing and f (0) = 0.

2. Preliminaries and problem statement

The interaction topology of oscillators can be conveniently
modeled by a graph. Let G = (V, E) be an undirected connected
graph, where V = {1, 2, . . . , n} represents the set of oscillators
and E = {(i, j) : i, j ∈ V} ⊆ V × V stands for the set of edges. An
edge (i, j) ∈ E implies that there exists a communication channel
between nodes i to j, and i is called a neighbor of j. Let Ni index
the set of the neighbors of i, and |Ni| denote its cardinality. The
adjacency matrix A = [aij] of an undirected graph is a symmetric
matrix with aij = 1 if i and j are neighbors, and aij = 0 otherwise.
Denote the degreematrix of G by D and D is a diagonal matrix with
the ith diagonal entry dii =


j∈Ni

aij. The graph Laplacian L is given
by L = D − A.

Consider a group of coupled harmonic oscillators with the
following dynamics:
ṙi(t) = vi(t)
v̇i(t) = −αri(t) + ui(t)

i = 1, 2, . . . , n, (1)

where ri(t), vi(t) ∈ R denote the position and velocity of the ith
oscillator respectively, ui(t) is the control protocol to be designed,
and

√
α is the frequency of the oscillators.

In [3,7], a continuous protocol was proposed. The coupled
harmonic oscillators based on periodic sampled-data control ware
considered in [10] and [11] respectively. In this paper, we aim
to address the synchronization problem of coupled harmonic
oscillators by event-triggered control. The controllers update
necessarily at some discrete time instants, which are completely
decided by the event-triggered detectors.

As the considered system has discontinuous right-hand side
under eventtriggered controllers, the solutions of the system are
considered in the Filippov sense.

Definition 1 ([21]). Consider a system given by

ẋ(t) = f (t, x), (2)

where f (t, x) : R × Rn
→ Rn is a measurable and essentially

locally bounded function. A vector function x(t) is called a Filippov
solution of (2) on [t0, t1) if x(t) is absolutely continuous on [t0, t1)
and for almost all t ∈ [t0, t1), satisfies

ẋ(t) ∈ K[f (t, x)], (3)

where K[f (t, x)] = ∩δ>0 ∩µ(S)=0 co{f (t, B(x, δ))\S} is a set-
valued map.

A solution x(t) is complete if x(t) satisfies (3) for almost all
t ∈ [t0, ∞).

Definition 2 ([22]). The set-valued Lie derivative of V (t, x) with
respect to x(t), the trajectory of (2), is defined by

˙̃V ,


ξ∈∂V (t,x)

ξ T

K[f (t, x)]

1


,

where ∂V (t, x) is the generalized gradient of V at (t, x).

In particular, if the function V (t, x) does not explicit depend on t ,
the set valued Lie derivative of V (x) with respect to x(t) becomes
˙̃V , ∩ξ∈∂V (x) ξ TK[f (t, x)]. Based on the fact that if let V (x) be a
Lipschitz and regular function, then V (x) is absolutely continuous
and d

dt V (x) ∈
˙̃V for almost everywhere t > t0.

3. Event-triggered synchronization protocols

Denote the position and velocity state averages of oscillators
as r̄(t) =

1
n

n
1 ri(t) and v̄(t) =

1
n

n
1 vi(t), respectively.

Define synchronization position error and velocity error as ξi(t) =

ri(t) − r̄(t) and ηi(t) = vi(t) − v̄(t), respectively. Obviously,
the synchronization is achieved asymptotically if ξi(t) → 0 and
ηi(t) → 0 as t → ∞. For simplicity, the time variable t is
omitted if no confusion. Let ξ = [ξ1, ξ2, . . . , ξn]

T and η =

[η1, η2, . . . , ηn]
T .

Lemma 1 ([23]). If G is a connected undirected graph of order n,
then the eigenvalues of L can be arranged in the increasing order
0 = λ1 < λ2 ≤ · · · ≤ λn. Furthermore, for any ζ ∈ Rn such
that ζ T1n = 0, then

λ2ζ
T ζ ≤ ζ T Lζ ≤ λnζ

T ζ .

It is obvious that ξ T1n = ηT1n = 0.

Lemma 2. For any a > 0, x, y ∈ Rn and positive semi-definitematrix
L, one has

xT Ly ≤
a
2
xT L2x +

1
2a

yTy.

Lemma 3 ([24]).
(1) Assume that f (x), g(x) : Rm

→ Rn are locally bounded, then

K[f (x) + g(x)] ⊆ K[f (x)] + K[g(x)].

(2) Let g(x) : Rn
→ Rp×n (i.e., matrix valued) be continuous and

f (x) : Rm
→ Rn be locally bounded, then

K[g(x)f (x)] = g(x)K[f (x)].

3.1. Centralized event-triggered control protocol

In this subsection, the centralized event-triggered synchronized
protocol is proposed, where all the oscillators share a common
event-triggering condition. The event instants of all oscillators are
denoted by t0, t1, . . . , tk, . . . , with tk < tk+1. Between any two
consecutive event instants, all controllers are held constant in a
zero-order hold fashion. The proposed centralized event-triggered
control protocol is given by

ui(t) = −


j∈Ni

(vi(tk) − vj(tk)), t ∈ [tk, tk+1). (4)

By (1), (4) and the symmetry of the communication topology, it
gives

˙̄r(t) = v̄(t)
˙̄v(t) = −αr̄(t),

(5)

which means that the dynamic average of the system (1) is
preserved. For oscillator i, introduce the measurement error
ei(t) = ηi(tk) − ηi(t), t ∈ [tk, tk+1). Let e = [e1, e2, . . . , en]T . By
protocol (4), the dynamics of error system is given by

ξ̇ (t) = η(t),
η̇(t) = −αξ(t) − L(η(t) + e(t)). (6)

Note that an event occurs whenever the measurement error
increases to a proper defined threshold and then themeasurement
error resets to zero immediately. This leads to discontinuous
right-hand side of system (6). Thus, it is more reasonable to
analyze the dynamic behaviorwithin the framework of nonsmooth
analysis.
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