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a b s t r a c t

Observability-based path planning of autonomous sampling platforms for flow estimation is a technique
by which candidate trajectories are evaluated based on their ability to enhance the observability of
underlying flow-field parameters. Until now, observability-based path planning has focused primarily
on forward-in-time integration. We present a novel approach that makes use of the background error
covariance at the current time to account properly for uncertainty of the underlying flow. The reduced
Hessian of an optimal, linear data-assimilation strategy properly accounts for prior knowledge in the
linear case andmust be full rank to infer the initial state. The reduced Hessian represents an observability
Gramian augmented with an inverse prior covariance. We extend this concept to the nonlinear case to
yield a new criterion for scoring candidate trajectories: the empirical augmented unobservability index.
Solving the differential covariance Riccati equation of the Kalman Filter for deterministic dynamics also
properly accounts for prior knowledge in the linear case, but at a later time. The solution to this equation
reveals the important distinctions between observability-based, augmented observability-based, and
anticipated covariance-based path planning. Path planning based on this unobservability index in the
presence of prior information yields the desired behavior in numerical experiments of a guided Lagrangian
sensor in a two-vortex flow pertinent to ocean sampling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ocean-observing systems provide essential information on the
state of the ocean for use in oceanographic, atmospheric, and cli-
matological modeling and forecasting. One such system is Argo, a
continuously deployed, global array of drifting platforms [1]. These
sensor systems will continue to increase in coverage and sam-
pling capabilities as demand for ocean data increases. Incorpo-
ration of autonomous sampling platforms reduces oceanographic
uncertainty through the determination of advantageous routes
for measurement collection in response to uncertainty in esti-
mates of a real-time environmental process [2]. The flowmeasure-
ments of ocean sampling vehicles are often their Lagrangian data,
i.e., measurements of the vehicle position under the influence of
the flow. One such sampling platform is the underwater glider,
which is a buoyancy-driven vehicle that alters its depth in a sinu-
soidalmanner to induce flow over attachedwings tomake forward
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progress [3,4]. Sensor platforms like gliders areminimally actuated
to extend endurance; planning efficient, feasible, and informative
routes is therefore essential.

Observability is the property of being able to infer the initial
state of a system or underlying model parameters by observing
the system output over a fixed time interval. Many researchers
have planned informative routes by considering the path’s
observability or empirical observability,which is an approximation
to observability for nonlinear systems. Hinson et al. [5] analytically
derive a trajectory that maximizes the observability of inertial
position and heading for a self-propelled vehicle in a uniform
flow. They pose an optimal-control problem to choose a path that
minimizes the condition number of the observability Gramian for
the linearized dynamics. Unfortunately, analytical solutions to the
optimal-control problem only exist in specialized cases, due to the
non-differentiability and non-convexity of the cost functional [5].
This problemmay be addressedwith grid-based optimization such
as in the multi-vehicle sampling algorithm of DeVries et al. [6], if
the application permits. Quenzer and Morgansen [7] also perform
a finite-dimensional optimization over a discrete set of constant
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turning rates for an empirical observability-based controller in a
multi-vehicle helming application.

Another method for performing finite-dimensional optimiza-
tion of observability is to consider evaluation over a family of
pre-determined candidate trajectories. The Adaptive Sampling and
Prediction (ASAP) field experiment in Monterey Bay performed
a similar optimization over a family of coordinated sampling
patterns with respect to a sampling performance metric [8]. In
addition to reducing computational cost, this method permits in-
tegration of observability optimization with other control policies
that may have generated the candidate trajectories. In prior work,
we generated candidate trajectories that steer a vehicle to sepa-
rating boundaries of invariant regions in a two-vortex flow field
[9,10].

Previous observability-based path-planning research has only
been forward-looking. We propose to score trajectories using a
new measure, the augmented unobservability index, to quantify
howmuch each path increases the observability of estimated flow
parameters given prior information in the formof a background er-
ror covariance matrix. Incorporating prior information in adaptive
sampling has been accomplished by maximizing the anticipated
reduction in error covariance. For example, Bishop et al. [11] con-
sider an adaptive network design problem by optimizing the fore-
casted error covariance of an Ensemble Transform Kalman Filter
over a finite set of possible network realizations. Davis et al. [12]
also consider the forecasted covariance reduction in an objective
analysis estimation technique to simulate routes for underwater
gliders. Anticipated error covariance analysis is similar in the case
of a linear deterministic model to augmented observability. How-
ever, we highlight the distinctions in Section 3. In the nonlinear
case, the approaches differ because the anticipated reduction in co-
variance approach depends on the estimation scheme. We define
empirical augmented observability independently of the estima-
tor; it includes only the system dynamics, output equations, and
the background error covariance.

Our technical approach first considers the variational data as-
similation strategy 4D-Var with deterministic, linear dynamics
and uncertain measurements. These dynamics correspond to a
tangent-linear approximation of a nonlinear system, similar to the
tangent-linear model used in the definition of empirical observ-
ability by Krener and Ide [13]. The optimal solution of this problem
requires inversion of amatrix known as the reduced Hessian. Since
we formulate the reduced Hessian in terms of linear observability
with the addition of an inverse background error covariance, we
refer to it as the augmented observability Gramian. Theminimum-
variance solution for a posterior filter covariance is given by the
continuous-time Kalman Filter, which provides a differential Ric-
cati equation describing its evolution. We derive the analytical so-
lution to this differential Riccati equation by connecting the inverse
covariance of a Kalman Filter to the augmented observability. We
extend the concept of augmented observability to the nonlinear
setting using an empirical observability Gramian and derive an up-
per bound on the associated empirical augmented unobservability
index.

The contributions of this paper are: (1) an analytical solution
to a continuous-time 4D-Var variational data assimilation prob-
lem in terms of the linear stochastic observability Gramian with
an inverse background error covariance, which we refer to as aug-
mented observability; (2) an analytical solution to the continuous-
time Kalman Filter Riccati equation for a linear time-varying
systemwith deterministic dynamics and uncertain measurements
in terms of the stochastic observability Gramian; and (3) an exten-
sion of augmented observability to nonlinear systems based on the
empirical observability Gramian, yielding a novel method for scor-
ing candidate trajectories, the empirical augmented unobservabil-
ity index. These contributions are important because they provide

a quantitative evaluation criterion for automatic selection of the
candidate path that maximizes the anticipated observability given
existing state uncertainty. The strategy of path planning with em-
pirical augmented observability is illustrated for a single vehicle
in a two-vortex flow pertinent to ocean sampling. This example
demonstrates that augmenting observability with prior informa-
tion improves sampling by changing the optimal path in an intu-
itive manner.

Section 2 reviews empirical observability for nonlinear systems,
the two-vortex system, and model-predictive path planning based
on observability. Section 3 solves a linear 4D-Var variational
data assimilation problem, defines the augmented observability
Gramian, and derives the optimal inverse posterior covariance
for a continuous-time Kalman Filter with deterministic dynamics.
Section 4 extends augmented observability to the nonlinear setting
and presents numerical experiments showing path planning
using the empirical augmented unobservability index. Section 5
summarizes the paper and ongoing research.

2. Observability-based path planning in a two-vortex flow

This section reviews the empirical observability Gramian and
observability-based path planning. It also presents background
information on the dynamics of a Lagrangian sensor platform in
a two-vortex flow.

2.1. Linear and empirical observability

Observability describes the ability to infer the initial state of
a system by observing the output over a specified time interval.
Consider the linear system

ẋ(t) = A(t)x(t), y(t) = C(t)x(t) (1)

with x(t) ∈ Rn, y(t) ∈ Rm, A(t) ∈ Rn×n, and C(t) ∈ Rm×n.
Observability can be assessed through inspection of the linear
observability Gramian [14]

Wo(t0, t) =

 t

t0
Φ(τ , t0)TCT (τ )C(τ )Φ(τ , t0)dτ , (2)

whereΦ(τ , t0) is the state transitionmatrix for the dynamics from
time t0 to τ . By uniqueness of the state solution to (1), the state
transition matrix has the property that Φ(τ , t0)−1

= Φ(t0, τ ).
Assessing the rank of Wo(t0, t) is a boolean test to determine
whether the system is observable on the time interval [t0, t]: if
Wo(t0, t) is full rank, then the system state is observable.

Next, consider the nonlinear system

ẋ(t) = f (t, x(t)), y(t) = h(t, x(t)) + v(t), (3)

where f and h are nonlinear functions and v(t) is white Gaussian
noise with covariance R(t). The tangent-linear model for the
dynamics (3) along a reference trajectory xr(t) with output yr(t)
is given by the linear system

d
dt

(δx(t)) =
∂ f
∂x


xr (t)

δx(t), δy(t) =
∂h
∂x


xr (t)

δx(t). (4)

For an initial condition x0, the solution to (4) for δx(t0) = x(t0) −

xr(t0) yields the approximations xr(t) + δx(t) ≈ x(t) and yr(t) +

δy(t) ≈ y(t). The local observability Gramian for the nonlinear
system (3) is defined to be the linear observability Gramian (2) for
the tangent-linear approximation (4) with C(τ ) = ∂h/∂x|xr (τ ) and
Φ(τ , t0) as the state transition matrix for ∂ f /∂x|xr (τ ) [13].

The empirical observabilityGramian [13] is an approximation of
the linear observability Gramian (2) for the nonlinear system (3).
Let φ(·, t0, x(t0)) denote the state solution of (3) from (t0, x(t0)),
h±j the system output corresponding to perturbed initial condition
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