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a b s t r a c t

This paper studies the stability and stabilization problems for a class of switched stochastic systems
under asynchronous switching. The asynchronous switching refers to that the switching of the candidate
controllers does not coincide with the switching of system modes. Two situations are considered:
(1) time-delayed switching situation, that is, the switching of the candidate controllers has a lag to
the switching of the system modes; (2) mismatched switching situation, the switching of the candidate
controllers does not match the switching of the system modes. Using average dwell time and Lyapunov-
like function, sufficient conditions are established for stochastic input-to-state stability of the whole
system. Also, the stabilizing controller design approach is proposed for switched stochastic linear systems.
Theminimal average dwell time and the controller gain are achieved. Finally, a numerical example is used
to demonstrate the validity of the developed results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Switched systems are a special class of hybrid systems, and con-
sist of a family of subsystems (also called system modes) and a
switching law that orchestrates the switching among the system
modes; see [1,2]. In practice, there are numerous physical systems
that could be modeled as the switched systems, such as fermen-
tation processes [1], networked control systems [3,4] and scalable
video coding systems [2]. Because of practical application and the-
oretical development, switched systems have been given consid-
erable attention in the last few decades. The readers are referred
to [5–9] for a general introduction and the recent progresses in the
field of switched systems.

In the practical systems, disturbances are inevitable and have
impacts on the stability and the performances of the dynamical
systems including switched systems. Furthermore, the stochastic
disturbances lead to stochastic modeling and control for the
control systems, which leads to switched stochastic systems.
In the literature, there are some salient results on switched
stochastic systems, such as stability [10–12], fault detection
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filtering [13], passivity and passification [14], H∞ control [15],
sliding mode control [16]. In the established methods, there
are two widely applied approaches to study switched systems,
i.e., average dwell time (ADT) approach [8,17] and Lyapunov
function approach [18–20]. Average dwell time characterizes the
switching rate that guarantees stability of the closed-loop system.
In Lyapunov function approach, multiple Lyapunov function is
an essential Lyapunov function. Combining ADT and multiple
Lyapunov function, stability analyses and control syntheses of
switched systems have been investigated; see [12,14,16,19,21].

In the previous works [8,10,11], there is a general assumption:
the switching of the candidate controllers and the systemmodes is
coincident, which is called synchronous switching. However, asyn-
chronous switching, which is opposed to the synchronous switch-
ing, is more practical. Asynchronous phenomena like time delays
can be found in many fields, such as networked control systems
[4,22], chemical systems [23], Markovian jump systems [24] and
neural systems [25]. For the switched systems, asynchronous
switchingmay be caused by disturbances, identification of the sys-
tem modes, implementation of the matched controller, time de-
lays in information transmission and even the requirements of the
switching law. Because the switched systems do not necessarily
inherit the stability properties of the subsystems, asynchronous
switching may further deteriorate the performances of switched
systems. Some studies have been reported in the literature. For
instance, asynchronous control problem of switched linear sys-
tems was addressed in [21]. The stability conditions were estab-
lished in terms of ADT and Lyapunov-like conditions. Stability of
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switched nonlinear systems was considered in [26] by analyzing
the Lie derivative of Lyapunov function. If time delays and asyn-
chronous switching were considered, then Lyapunov–Krasovskii
functional method was used in [25] to derive the stability condi-
tions for switched nonlinear systems.

In this paper, we study the stability and stabilization problems
for switched stochastic systems under asynchronous switching.
Sufficient conditions are established for stochastic stability and
controller design. Based on the different causes of asynchronous
switching, two cases are considered. The first case is time-delayed
switching, i.e., there are time delays between the switches of the
candidate controllers and the system modes. The second one is
mismatched switching, that is, there are no time delays but switch-
ing mismatches at the switching times. Under these two cases,
stochastic stability of switched stochastic systems is studied in
continuous-time context and discrete-time context. UsingADT and
Lyapunov function approach, sufficient conditions are established
to guarantee stochastic input-to-state stability (SISS). Further-
more, for switched stochastic linear systems, the stabilizing con-
trollers design approach is proposed. Finally, a numerical example
is used to demonstrate the effectiveness of the designed con-
trollers. Compared with the previous works in [19,24–26,12], the
contributions of this paper are three-fold. First, two asynchronous
switching cases are studied, whereas only the time-delayed
switching casewas considered in the previousworks [19,25,26,21].
Especially, the mismatched switching case is first studied in
this paper. Second, for above two asynchronous switching cases,
the stability conditions are established, which extends the pre-
vious results for the deterministic/linear/synchronous switched
systems [12,19,21]. Moreover, both the continuous-time systems
and the discrete-time systems are considered. Third, for switched
stochastic linear systems with asynchronous switching, the stabi-
lizing switched controller is designed, which recovers many previ-
ous works [21,27] as the special cases.

This paper is organized as follows. In Section 2, the consid-
ered problem is formulated and some preliminaries are given.
Using average dwell-time and multiple Lyapunov-like function,
sufficient conditions for SISS of switched stochastic systems are de-
rived in Section 3. Both the time-delayed switching case and the
mismatched switching case are considered. For these two cases,
the stabilizing switched controllers are designed for switched
stochastic linear systems in Section 4. In Section 5, a numerical ex-
ample is used to illustrate the obtained results. Conclusions and
future works are stated in Section 6.

Notation: The notation used in this paper is fairly standard.
N+ stands for the set of nonnegative integers; Rn denotes the
n-dimensional Euclidean space; | · | represents the Euclidean
vector norm. P{·} denotes the probability measure; E[·] denotes
the mathematical expectation. C1,2 stands for the space of the
functions that are continuously differentiable on the first augment
and continuously twice differentiable on the second augment. A
function α(t) : R+

→ R+ is of class K if it is continuous, zero at
zero, and strictly increasing; α(t) is of class K∞ if it is of class K
and unbounded. A functionβ(s, t) : R+

×R+
→ R+ is of classKL

if β(s, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to
zero as t → 0 for each fixed s ≥ 0. Ln

∞
denotes the set of all the

measurable and locally essentially bounded signal x ∈ Rn on R+

with norm ∥x∥ := supt≥t0 inf{A⊂Ω,P{A}=0} sup{|x(t, w)||w ∈ Ω \

A}. In addition, the symbols tr[·] and diag{·} denote trace operator
and block diagonal matrix operator, respectively. The superscript
‘‘T ’’ denotes the transpose, and the symmetric term in a matrix is
denoted by ∗. A > 0 (A ≥ 0) means that the matrix A is positive
definite (positive semidefinite). For simplicity, denoteα1◦α2(s) :=

α1(α2(s)) for all α1, α2 : R → R and s ≥ 0.

2. Problem formulation

Consider the switched stochastic nonlinear control system of
the form

dx(t) = fσ(t)(t, x, u, v)dt + gσ(t)(t, x, u, v)dw(t) (1)

for the continuous-time domain or

x(l + 1) = fσ(l)(l, x, u, v) + gσ(l)(l, x, u, v)w(l) (2)

for the discrete-time domain, where x ∈ Rnx is the system state
initializing at x(t0) = x0 and t0 ≥ 0, u ∈ Rnu is the control
input which is assumed to be measurable and locally bounded,
and v ∈ Lnv

∞
is the exogenous disturbance. A piecewise constant

and right continuous function σ : R+
→ M is a switching

signal specifying the index of the active subsystem, where M =

{1, . . . ,M} is an index set. For the continuous-time version (1),
w(t) is an nw-dimensional independent standard Wiener process
(or Brownian motion) defined on a complete probability space
(Ω, F , {Ft}t≥t0 ,P); for the discrete-time version (2), w(l) is a
scalar Gaussian white noise with E[w(l)] = 0 and E[w2(l)] = θ .
For each i ∈ M, both fi : [t0, ∞)×Rnx ×Rnu ×Lnv

∞
→ Rnx and gi :

[t0, ∞)×Rnx×Rnu×Lnv
∞

→ Rnx×nw are continuouswith respect to
t, x, u and v, anduniformly locally Lipschitzwith respect to x and v;
fi(·, 0, 0, 0) ≡ 0 and gi(·, 0, 0, 0) ≡ 0. For simplicity of notation,
the solution process of the switched stochastic system (1) or (2)
is assumed to be existent and unique for all the time; see [9,19].
Otherwise, the solution process is only defined on certain finite
interval [t0, tmax) and tmax > t0. However, all the subsequent
results are still valid for this case.

Definition 1 ([8]). For a switching signal σ and any t2 > t1 ≥ t0,
letNσ (t2, t1)be the switching number ofσ over the interval [t1, t2).
If there exist constants N0 ≥ 1 and τa > 0 such that

Nσ (t2, t1) ≤ N0 +
t2 − t1

τa
, (3)

then N0 and τa are called the chatter bound and the average dwell
time, respectively.

In the following, the stability definitions are introduced for the
continuous-time system (1). For the discrete-time version (2), the
stability definitions are obtained similarly.

Definition 2 ([12]). The switched stochastic nonlinear system (1)
is stochastically input-to-state stable (SISS), if for any ε > 0, there
exist β ∈ KL and γ ∈ K∞ such that for all x0 ∈ Rnx , u ∈ Rnu and
v ∈ Lnv

∞
,

P{|x(t)| ≤ β(|x(t0)|, t − t0) + γ (∥v∥)} ≥ 1 − ε, t ≥ t0. (4)

If the inequality (4) holds for v ≡ 0, then the system (1)with v ≡ 0
is stochastically globally asymptotically stable (SGAS).

To stabilize the switched stochastic nonlinear system (1) and
(2), the candidate mode-dependent controllers are designed as
u(t) = κσ(t)(x(t)) for the continuous-time version (1) or u(l) =

κσ(l)(x(l)) for the discrete-time version (2). In the literature, there is
a common assumption for the candidate controllers: the switching
of the candidate controllers is coincident with the switching of the
system modes. In practice, this assumption is hard to be satisfied,
whereas the asynchronous switching exists extensively in the
physical systems [22–25]. However, the asynchronous switching
deteriorates the stability and the performances of the switched
stochastic control systems.

Therefore, the objectives of this paper are to establish
the sufficient conditions to guarantee stochastic input-to-state
stability of switched stochastic systems and to design the mode-
dependent controllers under asynchronous switching. Based on
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