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a b s t r a c t

This paper addresses the single-experiment observability decomposition of discrete-time analytic sys-
tems. Unlike the continuous-time case, there exist systems which cannot be decomposed into observable
and unobservable subsystems due to the fact that the observable space is not integrable. In this paper,
a necessary and sufficient condition for integrability of observable space is given. As a corollary of this
condition it is proven that if the system is reversible, the observability decomposition can be always
achieved. Moreover, integrability of observable space is also addressed for delta-domain models of non-
uniformly sampled systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the linear control theory, the Kalman decomposition plays a
central role and has a close relationshipwith the realization theory
of the transfer function matrix because the accessible and observ-
able part corresponds to the transfer function matrix. The Kalman
decomposition has been extended to the case of continuous-
time nonlinear systems by differential geometric methods [1,2].
However, such decomposition is still missing in the discrete-time
domain. This is due to the fact that not all single-experiment unob-
servable discrete-time nonlinear systems can be decomposed into
single-experiment observable and unobservable subsystems [3],
where single-experiment observability means that arbitrary initial
state is uniquely determined by a single sequence of inputs and the
corresponding sequence of outputs [4].

For continuous-time nonlinear systems, the single-experiment
observability decomposition is carried out both via differential
geometric [1,2] and algebraic methods [5]. In [5] decomposition is
carried out first for globally linearized system equations, that is,
into observable and unobservable subspaces of differential one-
forms. This is always doable both in continuous- and discrete-
time cases (for the latter, see [3]). Since in the continuous-time
case the observable subspace of one-forms is proved to be always
generically integrable, it can be locally spanned by exact one-forms
whose integrals define the observable state coordinates. However,
it was shown in [3] on the bases of simple bilinear examples that
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the observable space of the discrete-time system is not always
integrable. The paper [6] presents a subclass of systems with non-
integrable observable space.

For discrete-time nonlinear systems, the papers [3,7–10] ad-
dressed the state space decomposition into observable and un-
observable subsystems. The paper [7] considers only autonomous
systems without control whereas the decomposition in [8] is
based on multiple-experiment observability, which is a weaker
property than single-experiment observability; see [4] for more
details about comparisons of observability notions. The paper [3]
stated a conjecture that the observable space with respect to
single-experiment observability is integrable for reversible ana-
lytic systems. This conjecture is based on two facts: (i) in the
continuous-time case the observable subspace is integrable, and
(ii) exact sampled-date model of the continuous-time system is
reversible [11]. Because of the latter fact, reversibility assumption
is not very restrictive. The paper [9] proves the conjecture only for
polynomial systems. However, the proof carried out in [9], cannot
be directly extended even for rational systems because it relies on
the specific properties of polynomials; for instance the output at
each time instant can be described as the sum of monomials of
input variables with coefficients being polynomials of the state
variables. Of course, in case one drops the requirement that the
decomposed equations have to be in the form of the classical state
equations and allows the generalized state equations (and the
generalized state transformation) that, besides inputs,may depend
also on forward shifts of inputs, it becomes always possible to
carry out the decomposition [10]. However, as demonstrated in
this paper, not all observability properties, for instance multiple-
experiment observability, are preserved under the generalized
state transformation.
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The goal of this paper is to prove that in case of reversible
analytic systems, single-experiment unobservable systems can al-
ways be decomposed into single-experiment observable and un-
observable subsystems in the form of classical state equations by
classical state transformations, exactly like in the continuous-time
counterpart [1,2,5], i.e., the conjecture from [3] is proven to be
true. The main idea of the proof is to show that the multiple-
experiment observability decomposition in [8] is nothing else but
the single-experiment observability decomposition if the system
is analytic and reversible. As an application of the result, one can
extend the Kalman decomposition for this subclass of systems as
demonstrated in the conference version of this paper [12].

A description of a dynamical system, based on difference opera-
tor is often referred to as delta-domain description. Delta-domain
models are closely linked to the continuous-time systems. When
signals are sampled at high rate such models are less sensitive to
round-off errors and do not yield ill-conditioned models, as often
happenswithmodels based on the shift operators [13]. As an appli-
cation of ourmain result,wewill prove that the observable space of
analytic delta-domain model is integrable (for almost all sampling
times). This fact demonstrates once again that the properties of
such models are closer to those of the continuous-time systems.
Note that unlike [13], we do not assume constant sampling rate
but address also non-uniformly sampled systems, the literature of
which is not very large though such models are important in the
nontraditional application areas such as, for instance, control over
networks or biology and medicine.

Preliminary results of this paper were partly presented in con-
ference paper [12]. The present improved version differs from it
in a number of aspects. First, a necessary and sufficient condi-
tion for integrability of single-experiment observable space of not
necessary reversible system is given. Second, a simpler proof of
integrability of single-experiment observable space for reversible
analytic systems is presented. Third, a vehicle model with zero slip
angle [14] is added to demonstrate one of the main results. Finally,
the analytic delta-domain models were studied.

The paper is organized as follows. Preliminary information
about algebraic framework and notions of observability are given
in Section 2. Integrability of observability space of discrete-time
systems and delta-domain models are studied in Sections 3 and 4,
respectively. Section 5 provides brief conclusions.

2. Preliminaries

2.1. Algebraic framework

In what follows we use the notation ξ for any variable ξ (t),
and ξ ⟨ℓ⟩(t) for its time shift ξ (t + ℓ), ℓ ∈ Z. From this definition,
ξ (t) = ξ ⟨0⟩(t). Consider the discrete-time system

x⟨1⟩(t) = f (x(t), u(t)),
y(t) = h(x(t)), (1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, and y(t) ∈ Y ⊂ Rp; X ,U , and
Y are open subsets; f : X×U → X and h : X×U → Y are assumed
to be analytic vector functions. We denote the composition of
function f as

(fu⟨1⟩ ◦ fu)(x) = f (f (x, u), u⟨1⟩).

For the sake of simplicity, fUℓ
(x) denotes (fu⟨ℓ−1⟩ ◦ · · · ◦ fu⟨1⟩ ◦ fu)(x),

whereUℓ (ℓ ≥ 1) denotes the input sequence (u, u⟨1⟩, . . . , u⟨ℓ−1⟩) ∈

Rm×ℓ.
In this paper, reversibility is an important concept.

Definition 1. The system (1) is said to be generically reversible if

rank
∂ f (x, u)

∂x
= n (2)

holds generically, i.e., this property holds on an open and dense
subset of X×U , provided it holds at some point of this domain.

The generic reversibility property is independent of the chosen
coordinates. The coordinate transformation z = ϕ(x) (rank ∂ϕ(x)

∂x =

n) results in z⟨1⟩(t) = ϕ(f (ϕ−1(z(t)), u(t))). For this system,wehave

∂ϕ(f (ϕ−1(z), u))
∂z

=
∂ϕ(x)
∂x

⏐⏐⏐⏐
x=f (ϕ−1(z),u)

∂ f (x, u)
∂x

⏐⏐⏐⏐
x=ϕ−1(z)

∂ϕ−1(z)
∂z

.

and so, the reversibility is invariant.
The reversibility assumption is satisfied by a sampled model of

continuous-time system for almost all sampling time [11] and is
a bit stronger property than submersivity, typically made in the
discrete-time context, when one assumes

rank
∂ f (x, u)
∂(x, u)

= n. (3)

Let K be the field of meromorphic functions in a finite num-
ber of independent system variables from the infinite set C =

{x1, . . . , xn, u
⟨ℓ⟩

1 , . . . , u⟨ℓ⟩
m , ℓ ≥ 0}, where xi and u⟨ℓ⟩

j are respectively
the ith component of state vector x and jth component of input
vector u⟨ℓ⟩[6]. The forward-shift operator σf : K → K is defined
by

σf (φ)(x, u, u⟨1⟩, . . . , u⟨ℓ⟩) := φ(f (x, u), u⟨1⟩, u⟨2⟩, . . . , u⟨ℓ+1⟩).

Under the assumption (2) (or (3)), K is a difference field.
Consider the infinite set of symbols dC = {dx1, . . . , dxn, du

⟨ℓ⟩

1 ,

. . . , du⟨ℓ⟩
m , ℓ ≥ 0}, and denote by E the vector space over the field

K spanned by the elements of dC, namely, E = spanKdC. Any
element of E has the form
n∑

i=1

aidxi +
∑
ℓ≥0

m∑
j=1

bj,ℓdu
⟨ℓ⟩

j ,

where only a finite number of coefficients bj,ℓ, j = 1, . . . ,m, ℓ ≥ 0
are non-zero elements of K. The elements of E are called differen-
tial one-forms. The field K and the vector space E is connected by
the operator d : K → E:

d(φ)(x, u, u⟨1⟩, . . . , u⟨ℓ⟩) =

n∑
i=1

∂φ

∂xi
dxi +

∑
ℓ≥0

m∑
j=1

∂φ

∂u⟨ℓ⟩

j

du⟨ℓ⟩

j .

The operator σf : K → K induces a forward-shift operator
σf : E → E by

σf :

∑
i

aidφi →

∑
i

σf (ai)d(σf (φi)), ai ∈ K, φi ∈ C.

A differential one-form ω ∈ E is said to be exact if ω = dF for
some function F ∈ K. It is said to be integrable ifω = GdF for some
functions F ,G ∈ K. The notion of integrability is extended to the
vector space and can be checked by Frobenius theorem [15].

Definition 2. Let V := spanK{ω1, . . . , ωr} ⊂ E be the
r-dimensional subspace. The subspace V is said to be integrable if
V = spanK{dF1, . . . , dFr} for some functions Fi ∈ K, i = 1, . . . , r .

2.2. Observability

Two types of observability are addressed in this paper: single-
and multiple-experiment observability. In the next section, the
single-experiment observability decomposition is studied via the
multiple-experiment observability decomposition.

First, we recall the definition of single-experiment observabil-
ity. Introduce the subspacesX ,U , andY of E as follows (seemore in
[3]): X = spanK{dx1, . . . , dxn}, U = spanK{du⟨ℓ⟩

1 , . . . , du⟨ℓ⟩
m , ℓ ≥
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