Systems & Control Letters 98 (2016) 37-43

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

A state predictor for continuous-time stochastic systems

@ CrossMark

Filippo Cacace?, Valerio Cusimano ™, Alfredo Germani ¢, Pasquale Palumbo”

2 Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
b JASI-CNR Viale Manzoni 30, 00185 Roma, Italy
¢ Dipartimento di Ingegneria Elettrica e dell'Informazione, Universita degli Studi dell’Aquila, Via Vetoio, Coppito 67100 L'Aquila, Italy

ARTICLE INFO ABSTRACT
Article history: This work investigates the state prediction problem for nonlinear stochastic differential systems, affected
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filtering of continuous-discrete systems (i.e. stochastic differential systems with discrete measurements)
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and time-delay systems. A very common heuristic to achieve the state prediction exploits the numerical
integration of the deterministic nonlinear equation associated to the noise-free system. Unfortunately
these methods provide the exact solution only for linear systems. Instead here we provide the exact
state prediction for nonlinear system in terms of the series expansion of the expected value of the state
conditioned to the value in a previous time instant, obtained according to the Carleman embedding
technique. The truncation of the infinite series allows to compute the prediction at future times with
an arbitrary approximation. Simulations support the effectiveness of the proposed state-prediction
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algorithm in comparison to the aforementioned heuristic method.
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1. Problem formulation and background

Consider the following nonlinear stochastic differential system
in the It6 formulation

p
dxe = f(x)dt + ) gi(x)dWj, (1)
j=1

defined on a probability space (§2, F, P), where x; is the state
vector, f, g : R" — R" are nonlinear analytic maps and {W; € R,
j = 1,...,p} is a set of pairwise independent standard Wiener
processes with respect to a family of increasing o-algebras
{F:, t > 0}. The initial state X, = X is an Fyo-measurable random
vector, independent of the state noises Wj ;.

The problem here investigated is the prediction of x; given the
value x; at a previous time instant s < t, that is, the aim is
to compute the conditional expectation E(x;|x;). According to the
explicit solution of (1), and to the properties of the It6 integral [1]
the expected value is given by

t

E(xlts) = % + / B(F (e ). @)

Predictions are broadly exploited in the more general setting
of nonlinear filters, according to the usual paradigm suggesting to
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write the filter equations as a “prediction” + a “correction” term
(see e.g. [1,2]). The common denominator of such approaches,
that include the well known Extended Kalman-Bucy filter for the
continuous-time case, is that the prediction step is entrusted to the
following coarse simplification:

E(f (x¢)Ixs) = f (E(Xz [x5)).- (3)

Clearly, such an approximation is exact only in special cases, like
linear systems (see e.g. [3]). Such simplification provides an easy-
to-handle heuristics since, by exploiting (3), the prediction z; =
E(x¢|xs) of (2) can be computed as the solution of the deterministic
differential system

2 = f(z),

Motivation for the present note stems from the need to build
up a theory providing the solution to the state prediction problem
that, in principle, could be applied to such a broad range of non-
linear filtering framework. This problem is especially important
when designing continuous-discrete (CD) filters, that is, filters for
stochastic differential systems with sampled measurements. CD
filters are ubiquitous in problems such as tracking [4], finance [1]
and systems biology [5], and they are receiving growing attention
in recent years [6-8]. One reason for this interest is that new ap-
plication areas such as systems biology often employ continuous-
time models as in (1), coupled with sampled measurements with
large sampling intervals. There can be found many solutions to
CD filters in the literature, such as continuous-discrete extended

Ze = Xs. (4)
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Kalman filter, CD-EKF [2,9], CD unscented Kalman filter, CD-UKF
[10], and CD cubature Kalman filter, CD-CKF [11]. In the case of CD
filters the crucial problem is the evolution of the state moments
during the sampling interval, since the optimal state estimate over
the inter-sampling period (e.g. for t € [kA, (k + 1)A), where
t =kA, k=0, 1, ...arethetime instants when measurements are
acquired) is provided by the prediction E(x, | X, ), formally defined
by
t
Bt Rea) = s + /k E(f(xe )R . (5)
A

This is, clearly, the same problem introduced in (2) with s =
kA and x; = X(kA). In the literature, CD filters share the same
approach to solve the optimal state prediction problem based on
(3), and Eq. (4) (written with s = kA) endowed with the equation
of the covariance of the prediction error are also called differential
moment equations: in this framework several recent works have
been devoted to propose precise and efficient methods to eval-
uate the solution of (4) on small discretization intervals, see for
example [6-8]. However, these methods provide precise solutions
to the approximate equation (4), whereas the exact prediction (2)
cannot be obtained by solving an ordinary differential equation
(see for example [2], p. 168). The right hand-side of (2) involves
an expectation that requires the whole conditional density for
its evaluation. Stated differently, the evaluation of the first two
moments of the prediction depends on all the other moments. It
should be mentioned that when the discretization interval is not
negligible the solutions of (2) and (4) can be quite different even in
the simple case of scalar systems.

Furthermore, the application of state predictors for stochastic
systems is not limited to CD filters, for example they are useful in
the area of stochastic delay equations [ 12] as well as predictors and
filters for stochastic systems with delays in the input and/or the
output [13,14].

From a theoretical viewpoint, the solution to the prediction
problem can be pursued by searching for the conditional density
p(X¢, t|xs, s) provided by the solution of the Kolmogorov forward
equation, and then use p to compute the conditional expectation
(2). Since the solution of the Kolmogorov forward equation can
be obtained by analytic means only in few cases, a number of
numerical methods have been proposed to this aim, including
finite-difference method [15], finite elements [ 16], adaptive finite-
elements ([17], pp. 115-123), quadrature-based methods [ 18], the
adjoint method [19], Galerkin’s method [20,21], particle methods
[22-24] and Markov chain Monte Carlo methods [25]. The compu-
tational complexity of solving the Kolmogorov equation increases
exponentially with the dimension of the state vector. For this
reason, this approach is not well suited for the implementation of
real-time predictors (or filters) even for systems of moderate size.

In this work we introduce an approximation scheme for the
state prediction equation (2). The proposed solution has several
positive features. In the first place we provide the exact solution
to the correct problem statement: its analytical form is expressed
in terms of a Taylor series expansion, thus the state prediction (2)
can be computed with any arbitrary precision. In the second place,
and for the same reason, the prediction can be made precise on
arbitrary sampling intervals. A final advantage is that, because of
the analytic expression provided by the method, the state predic-
tion E(x;|xs) can be used for analysis purposes, and not only as
a numerical value. As a drawback, it can be mentioned that our
method applies only to systems of the form (1), that is, to time-
invariant nonlinear systems, in contrast with other methods that
include also the time-varying case.

The approximation scheme is in essence based on the Carle-
man embedding technique, already exploited in [26] for a slightly
different stochastic differential system (nonlinear drift 4+ additive

Gaussian noise, instead of the more general nonlinear diffusion
term here considered) with the aim of continuous-time filters.
The Carleman technique results in the embedding of the original
finite-dimensional nonlinear system into an infinite-dimensional
bilinear one. Differently from [26], where the state-estimation
problem required a further finite-dimensional approximation of
the Carleman embedding, here we propose the exact stochastic
discretization of the Carleman embedding without any approx-
imation, thus obtaining the optimal prediction as the sum of a
series, that we name the Carleman prediction in analogy to the
deterministic case [27,28].

Section 2 describes the approach, while Section 3 is devoted to
its evaluation. In particular we consider a class of systems widely
used in financial mathematics and for which the solution of the
prediction problem here described has important applications. In
a few cases the exact solution can be found by analytic tools. We
consider one such cases, with the aim of comparing the exact
solution of (2) with the standard approximation (4) and the one
provided by our method.

Notation. I, denotes the identity matrix in R". 0, denotes a
matrix of zeros in R™™. The symbol ® denotes the Kronecker
matrix product, the notation Al is used for the Kronecker power
of matrix A, thatisA® A® - - - ® A, repeated i times. The standard
Jacobian of f : R" — R" can be formally written as V,®f, where V,
denotes the operator [9/0x; ...d/dx,]. Higher-order derivatives

of f are represented as V,[(” Rf = VWw® (V,[(H] ®f), where
vef: R - r>,

2. Carleman predictor for stochastic systems

Consider the problem of computing the state prediction E(x; |x),
with x; = X, t > s and x; that evolves according to (1). Whenever
useful, the non negative displacement t — s will be referred to
as A > 0. The proposed prediction algorithm is based on the
following steps.

1. Define the displacement

Or =X —X. (6)

2. By using the Carleman embedding technique [27] we trans-
form the nonlinear stochastic differential system for ¢; into
an infinite-dimensional bilinear system (linear drift and
multiplicative noise).

3. Since the system is bilinear, the exact prediction of the
state in the embedded space is obtained by integrating the
corresponding linear drift without the noise terms.

4. Finally, we project the solution onto the original finite-
dimensional space to obtain E(x;|x).

To exploit the Carleman embedding, we shall make use of the
representation of the analytic maps f(x;) and gj(x;) as Taylor ex-
pansions around X, written according to the Kronecker formalism
(see [26] for details):

f) =) AR, gleo) =) Gl (7)
i=0 i=0
[i] :
AR =Y ST ‘f’f(x) Cemm, ®8)
| i l X=X '
(%) :%&(") er™ 9)
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