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a b s t r a c t

This paper provides parameterizations of all positively stabilizing feedbacks for a particular class of finite-
dimensional single-input positive systems, amethod to yield these parameterizations bymeans of tools of
linear programming and a convergence analysiswhich allows to extend the results to a particular infinite-
dimensional system described by a parabolic partial differential equation. It also provides an academic
standard example – the pure diffusion equation – to support the theoretical results.
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1. Introduction

Positive linear systems are linear systemswhose state variables
are nonnegative at all time. Studying this kind of systems is of great
importance as the nonnegativity property can be found frequently
in numerous fields like biology, chemistry, physics, ecology, econ-
omy or sociology (see e.g. [1–6] for particular examples). When
stabilizing a system, one cannot force a state variable representing
e.g. amass, a density or a concentration to becomenegative at some
time in order to make it asymptotically stable. It is then essential
to force the nonnegativity of the state at all time when studying
positive systems to ensure that the very nature of the system is
preserved and that the mathematical methodology makes sense
from the point of view of the applications.

In this paper we deal with the positive stabilization of positive
systems. Themain contributions include equivalent parameteriza-
tions of all positively stabilizing feedbacks for a particular class of
positive systems, using linear programming tools [7] among other
things, an in-depth analysis of the pure diffusion system in which
the theoretical results are applied, and a convergence study of the
discretized system to the nominal one—showing the consistency
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and stability [8,9] of the numerical scheme and using the state
space approach [10].

This paper is organized as follows. In Section 2 we provide
the reader with the definitions, the main concepts and the no-
tations used in the paper. We give in Section 3 a method to
yield all the positively stabilizing feedbacks for a particular class
of finite-dimensional single-input positive systems and apply the
results to a classical example, namely the pure diffusion system,
by means of the finite difference method. In Section 4 we show
the convergence of the discretized system to the nominal one,
thus leading to a positively stabilizing feedback boundary control
for the partial differential equation (PDE) system. We validate the
finite-dimensional results in Section 5 by providing the reader
with numerical simulations. Finally, Section 6 brings a conclusion,
together with some perspectives.

2. Preliminaries

2.1. Terminology

In the sequel, we will use the sets R+ := {x ∈ R | x ≥ 0},
R0,+ := {x ∈ R | x > 0}, Rn

+
:= {(x1, . . . , xn) ∈ Rn

| xi ∈ R+,∀i =

1, . . . , n} and Rn
0,+ := {(x1, . . . , xn) ∈ Rn

| xi ∈ R0,+,∀i =

1, . . . , n}. Similarly, R−, R0,−, Rn
−

and Rn
0,− denote the sets {x ∈

R | x ≤ 0}, {x ∈ R | x < 0}, {(x1, . . . , xn) ∈ Rn
| xi ∈ R−,∀i =

1, . . . , n} and {(x1, . . . , xn) ∈ Rn
| xi ∈ R0,−,∀i = 1, . . . , n}

respectively. The real part of a complex number z ∈ C will be
denoted by R(z). A nonnegative vector v has all its components
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greater or equal to zero (i.e. vi ∈ R+, for all i). The transpose of
a matrix A will be denoted by AT . The rank of a matrix A will be
denoted by rk(A). The ijth entry of a matrix A will be denoted by
aij. The spectrum of a matrix A is the set of its eigenvalues and will
be denoted by σ (A). A nonnegative matrix A (denoted by A ≥ 0)
has all its entries greater or equal to zero (i.e. aij ∈ R+, for all
i, j). A Metzler matrix A has all its off-diagonal entries greater or
equal to zero (i.e. aij ∈ R+, for all i ̸= j). A stable matrix A
has all its eigenvalues with negative real parts (i.e. R(λ) < 0,
∀λ ∈ σ (A)). A cone C is polyhedral if C = {x | Ax ≤ 0} for some
matrix A. The cone (finitely) generated by the vectors x1, . . . , xn is
the set cone{x1, . . . , xn} := {α1x1 + · · · + αnxn | α1, . . . , αn ≥ 0},
i.e. the smallest convex cone containing x1, . . . , xn. The interior of
the cone generated by the vectors x1, . . . , xn will be denoted by
coneo{x1, . . . , xn}. For convenience, lower-case letters when used
in an appropriate context will represent scalars or vectors, while
upper-case letters will represent matrices.

2.2. Main concepts

Let a linear time-invariant system{
ẋ = Ax + Bu
y = Cx + Du

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. We first recall
the concept of positive linear system [4,5,11,12].

Definition 1. A linear system R = [A, B, C,D] is positive if for
every nonnegative initial state x0 ∈ Rn

+
and for every admissible

nonnegative input u (i.e. every piecewise continuous function u :

R+ → Rm
+
) the state trajectory x of the system and the output

trajectory y are nonnegative (i.e. for all t ≥ 0, x(t) ∈ Rn
+

and
y(t) ∈ Rp

+).

It is possible to express the positivity of a system by use of the
matrices A, B, C and D only [4,5].

Theorem 1. A linear system R = [A, B, C,D] is positive if and only if
A is a Metzler matrix and B, C and D are nonnegative matrices.

Now we define the positive stabilizability of positive systems.
For convenience, throughout the paper the notion of stability will
refer to asymptotic stability, which is equivalent to exponential
stability as we deal with LTI systems.

Definition 2. A positive linear system R = [A, B, C,D] is positively
(exponentially) stabilizable if there exists a state feedback matrix
K ∈ Rm×n such that A+BK is a stable Metzler matrix, i.e. such that
there exist positive constantsM and σ such that for all t ≥ 0e(A+BK )t

 ≤ Me−σ t

and for all t ≥ 0, e(A+BK )t
≥ 0. Such a feedback matrix K is called a

positively stabilizing feedback for the system R.

The positive stabilization problem is concerned with existence
conditions and the computation of such a matrix K . Finally, we
introduce an important result from [2,5,12] which provides a nec-
essary and sufficient condition for the stability of a Metzler matrix.

Lemma 1. A Metzler matrix A ∈ Rn×n is stable if and only if there
exists v in Rn

0,+ such that Av is in Rn
0,−.

Remark 1. In Lemma 1 we use the notation v ∈ Rn
0,+ for a strictly

positive vector instead of the notation v ≫ 0 which can often be
found in the literature.

Remark 2. The sufficiency of the condition can be shown by
considering the Lyapunov function V (x) = vT x which leads to

V̇ (x) = vTAx < 0. The necessity follows from the fact that the
opposite of the inverse of a stable Metzler matrix is nonnegative:
it suffices to define v = −A−1τ with τ ∈ Rn

0,+. See [5, Lemma 2.2]
or [13, Lemma 1.1].

3. Designing all positively stabilizing feedbacks

3.1. A particular class of systems

Let us consider a particular class of systems and provide the
reader with a systematic way to design the general expression of
any positively stabilizing feedback. More precisely, we consider
single-input LTI positive systems described by ẋ = Ax + bu where
A ∈ Rn×n is Metzler and b ∈ Rn is nonnegative and has only one
non-null entry (w.l.o.g. the first one). The particular structure of
b is pretty common, notably when applying finite differences to
PDE systemswith boundary control (see Section 3.2). The following
result is analogous to [14, Theorem 3.1], though the first concerns
single-input multi-output systems with state-feedback and the
second concerns multi-input single-output systems with output-
feedback.

Theorem 2. Consider a linear time-invariant positive system R =

[A, B, C,D] described by ẋ = Ax + bu where A is Metzler and b is
nonnegative and has only its first entry different from zero. Then
(a) k = [k1 ... kn] is a positively stabilizing feedback for R if and
only if

k1 =
−a11v1 − (a12 + b1k2)v2 − · · · − (a1n + b1kn)vn − ω

b1v1
and

ki ≥
−a1i
b1

i = 2, . . . , n,

where ω > 0 is a free parameter, and v ∈ Rn is positive and solution
of the strict inequalities set

− ai1v1 − · · · − ainvn > 0 i = 2, . . . , n. (1)

(b) The set of solutions of (1) with the positivity constraint over v
is given by

o
cone{s1, . . . , sr} where r ≤ 2n − 1 and the column

vectors s1, . . . , sr are such that cone{aT2, . . . , a
T
n,−e1, . . . ,−en} =

{x | sT1x ≤ 0, . . . , sTr x ≤ 0} where ai denotes the ith row of A and ei
the ith vector of the canonical basis of Rn.

Remark 3. For the pure diffusion system, one can show that r = n
(see Theorem 3 in Section 3.2).

Proof. (a) It is straightforward to show that any feedback k as
described above positively stabilizes the system. Now consider a
general feedback k = [k1 ... kn]. The closed-loop matrix A + bk
has to be Metzler as we want positivity to be maintained, which
yields the conditions

ki ≥
−a1i
b1

i = 2, . . . , n

with k1 free. For the stability property we use Lemma 1: A + bk is
stable if and only if one can find a vector v ∈ Rn

0,+ such that (A +

bk)v is in Rn
0,−. This leads to the following set of strict inequalities

−(a11 + b1k1)v1 − · · · − (a1n + b1kn)vn = ω

−ai1v1 − · · · − ainvn > 0 i = 2, . . . , n
vi > 0 i = 1, . . . , n

with ω > 0. As only the first equation depends on the entries of k,
we can express

k1 =
−a11v1 − (a12 + b1k2)v2 − · · · − (a1n + b1kn)vn − ω

b1v1
with v any solution of the strict inequalities set above.
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