
Please cite this article in press as: W. Kang, E. Fridman, Sliding mode control of Schrödinger equation-ODE in the presence of unmatched disturbances, Systems & Control
Letters (2016), http://dx.doi.org/10.1016/j.sysconle.2016.10.009

Systems & Control Letters ( ) –

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Sliding mode control of Schrödinger equation-ODE in the presence of
unmatched disturbances✩

Wen Kang a,b,*, Emilia Fridmana

a School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
b Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

a r t i c l e i n f o

Article history:
Received 4 January 2016
Received in revised form 14 September
2016
Accepted 18 October 2016
Available online xxxx

Keywords:
Distributed parameter systems
Schrödinger equation
Backstepping
Sliding mode control
Input-to-state stability

a b s t r a c t

In this paper, we consider boundary stabilization for a cascade of Schrödinger equation-ODE systemwith
both, matched and unmatched disturbances. The backstepping method is first applied to transform the
system into an equivalent target system where the target system is input-to-state stable. To reject the
matched disturbance, the sliding mode control (SMC) law is designed for the target system. The well-
posedness of the closed-loop system is proved, and the reachability of the slidingmanifold in finite time is
justified by infinite-dimensional system theory. It is shown that the resulting closed-loop system is input-
to-state stable. A Numerical example illustrates the efficiency of the sliding mode design that reduces the
ultimate bound of the closed-loop system by rejecting the matched disturbance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the present paper, we consider stabilization of the
Schrödinger equation-ODE cascade system with matched and
unmatched disturbances. The main contribution of this paper is
the design of a state feedback controller that practically stabi-
lizes the coupled system in the presence of small unmatched
disturbance by rejecting the matched disturbance. The control
problems for unperturbed Schrödinger equations have been well
studied and many nice results have been obtained. For instance, E.
Machtyngier [1] discussed the exact controllability of Schrödinger
equation in bounded domains with Dirichlet boundary condition.
E. Machtyngier and E. Zuazua in [2] further considered the sta-
bilization problem of the Schrödinger equation. By introducing
multiplier techniques and constructing energy functionals, they
have proved the exponential stabilization of the system. M. Krstic
developed backstepping approach to deal with the problem of
stabilization of Schrödinger equation in [3–5].

During the last decade, a considerable amount of attention
has been paid to stability and control of systems described by
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partial differential equations (PDEs) subject to external distur-
bances. In [6,7], a stabilizing controller is designed for vibrating
system with uncertainty by the Lyapunov functional approach.
Input-to-state stability of the wave equation with a boundary
disturbance is studied in [8]. Stabilization for awave equationwith
distributed control and uncertainty by variable structure control is
considered in [9]. Direct output feedback stabilization for a heat
equation by the Lyapunov function method is discussed in [9].
More recently, the sliding mode boundary control is designed for a
one-dimensional unstable heat equation in [10]. The sliding mode
control is also applied to deal with stabilization for one dimen-
sionalwave equation, Euler–Bernoulli equation, Schrödinger equa-
tion, and cascaded heat partial differential equation system, where
the control channel is subject to external disturbance, in [11,12],
[13] and [14] respectively. SMC of finite-dimensional systems in
the presence of unmatched disturbances is considered in [15].
In [16], SMC is designed to guarantee minimization of unmatched
disturbance effects on systemmotions in a slidingmode. However,
the problem of feasible controller design for coupled ODE–PDE
systems as well as for coupled PDE–PDE systems is far from being
complete, and this problem is rather challenging.

In the present paper, to the best of our knowledge, the
backstepping-based sliding mode controller is designed for PDEs
in the presence of both, unmatched and matched disturbances.
Moreover, boundary backstepping-based SMC is extended to a new
class of PDEs: cascade of ODE-Schrödinger equation. We consider
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the following cascade with disturbances:⎧⎪⎨⎪⎩
Ẋ(t) = AX(t) + Bu(0, t) + B1d1(t), t > 0,
ut (x, t) = −iuxx(x, t), 0 < x < 1, t > 0,
ux(0, t) = CX(t), t > 0,
ux(1, t) = U(t) + d2(t), t > 0,

(1.1)

where A ∈ Cn×n, B ∈ Cn×1, C ∈ C1×n, X(t) ∈ Cn×1 is the state of
ordinary differential equation, u(x, t) ∈ C is the displacement of
Schrödinger equation, and U(t) ∈ C is the control actuation. The
unmatched disturbance d1 and thematched one d2 are assumed to
be measurable and bounded functions: |d1(t)| ≤ ∆ and |d2(t)| ≤

M , where∆ > 0 andM > 0 are known upper bounds.
Our main objective is state-feedback practical stabilization of

the coupled system in the presence of small unmatched distur-
bance d1(t) and matched bounded disturbance d2(t). We design a
SMC to reject the matched disturbance. We further establish the
reachability of the slidingmanifold in finite time and the existence
and uniqueness of the solution. Finally, input-to-state stability
(ISS) of the target closed-loop system is analyzed.

The structure of the paper is as follows. In the next section,
we transform system (1.1) into the equivalent target system by
the backstepping method. Section 3 is devoted to the matched
disturbance rejection by SMC approach. We design a sliding mode
control and prove the existence and uniqueness of solution of the
closed-loop system. The reachability of the sliding manifold in
finite time is presented. In Section 4, the Lyapunov method is used
to show that the closed-loop system on the sliding mode surface
is input-to-state stable. An example with numerical simulation is
presented in Section 5 for illustration of the effectiveness of the
method. Concluding remarks are presented in Section 6.

Notation. The Sobolev space W k,p(Ω) is defined as W k,p(Ω) =

{u : Dαu ∈ Lp(Ω), for all 0 ≤ |α| ≤ k} with norm ∥u∥W k,p

=
{∑

0≤|α|≤k∥D
αu∥p

Lp
} 1

p . W k,2(Ω) = Hk(Ω) is the Sobolev space
of absolutely continuous scalar functions on Ω with square inte-
grable derivatives of the order k ≥ 1.

2. Backstepping transformation

First, following (M. Krstic, A. Smyshlyaev [4]), we introduce a
transformation for [X, u] → [X, w] in the form⎧⎨⎩X(t) = X(t),

w(x, t) = u(x, t) −

∫ x

0
q(x, y)u(y, t)dy − γ (x)X(t) (2.1)

where

q(x, y) =

∫ x−y

0
iγ (σ )Bdσ , (2.2)

γ (x) =
[
K C iKA

]
e

⎡⎢⎢⎣
0 0 −iBC
I 0 iA
0 I 0

⎤⎥⎥⎦x [ I
0
0

]
. (2.3)

The transformations (2.1) transform the system (1.1) into the in-
termediate system of ODE-Schrödinger cascades of the following
form:⎧⎪⎨⎪⎩

Ẋ(t) = (A + BK )X(t) + Bw(0, t) + B1d1(t),
wt (x, t) = −iwxx(x, t),
wx(0, t) = 0,
wx(1, t) = W (t) + d2(t),

(2.4)

wherew(x, t) ∈ C. Assume that (A, B) is stabilizable and K ∈ C1×n

is chosen such that A + BK is Hurwitz. Here W (t) is intermediate

system controller of the form:

W (t) = U(t) − q(1, 1)u(1, t) −

∫ 1

0
qx(1, y)u(y, t)dy

− γ ′(1)X(t). (2.5)

The transformation (2.1) is invertible,⎧⎨⎩X(t) = X(t),

u(x, t) = w(x, t) +

∫ x

0
l(x, y)w(y, t)dy + ψ(x)X(t), (2.6)

where

l(x, y) =

∫ x−y

0
iψ(σ )Bdσ , (2.7)

ψ(x) =
[
K C

]
e

[
0 i(A + BK )
I 0

]
x [

I
0

]
. (2.8)

Next, a further transformation from [X, w] → [X, z] is given by⎧⎨⎩X(t) = X(t),

z(x, t) = w(x, t) −

∫ x

0
k(x, y)w(y, t)dy, (2.9)

where

k(x, y) = −cix
I1

(√
ci(x2 − y2)

)
√
ci(x2 − y2)

, (2.10)

and I1 is the modified Bessel function,

I1(x) =

∞∑
n=0

( x
2

)2n+1

n!(n + 1)!
. (2.11)

Hence, we obtain the target system:⎧⎪⎨⎪⎩
Ẋ(t) = (A + BK )X(t) + Bz(0, t) + B1d1(t),
zt (x, t) = −izxx(x, t) − cz(x, t),
zx(0, t) = 0,
zx(1, t) = Z(t) + d2(t),

(2.12)

where c > 0 and

Z(t) = W (t) − k(1, 1)w(1, t) −

∫ 1

0
kx(1, y)w(y, t)dy. (2.13)

Then,

Z(t) = U(t) − q(1, 1)u(1, t) −

∫ 1

0
qx(1, y)u(y, t)dy − γ ′(1)X(t)

− k(1, 1)
[
u(1, t) −

∫ 1

0
q(1, y)u(y, t)dy − γ (1)X(t)

]
−

∫ 1

0
kx(1, y)

[
u(y, t) −

∫ y

0
q(y, τ )u(τ , t)dτ − γ (y)X(t)

]
dy.

(2.14)

The inverse of the transformation (2.9) can be found as follows⎧⎨⎩X(t) = X(t),

w(x, t) = z(x, t) +

∫ x

0
p(x, y)z(y, t)dy, (2.15)

where

p(x, y) = −cix
J1(

√
ci(x2 − y2))√
ci(x2 − y2)

, (2.16)

and J1 is the Bessel function of first kind.
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