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inspired on different generalizations of Ackermann’s formula.
A possible application is in the context of sliding-mode control of implicit systems where, as the first

step, one can use the proposed formula to design a sliding surface with desired dynamic characteristics
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and, as the second step, apply a higher-order sliding-mode controller to enforce a sliding motion along
the resulting sliding surface.
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1. Introduction

In order to derive a mathematical model of a given dynamical
system one chooses first a set of descriptor variables (position,
speed, acceleration, temperature, current, voltage etc.) in an at-
tempt to define the state. The relationship among the chosen
variables gives rise to differential or algebraic equations, some-
times resulting in an implicit system. Implicit systems are also
referred to as generalized, descriptor, differential-algebraic (DAE)
or semi-state systems, and are mainly motivated by applications in
electric circuits and electromechanical or mechanical systems such
as constrained robots.

It is possible to bring a single-input-single-output explicit sys-
tem with strictly positive relative degree into a normal form that
clearly reveals its zero dynamics. If the system is minimum phase,
that s, if the zero dynamics are stable, it is then possible to stabilize
the system by means of a simple state feedback (it suffices to drive
the system output to zero). The extension of such results to the
case of implicit systems was reported, e.g., in [1-3], where the
authors propose a normal form for implicit systems and analyze
the stability of its zero dynamics.

The problem of choosing an output with desired zeros is re-
ferred to as zero placement [4]. Since the zeros of the transfer func-
tion of any linear time-invariant (LTI) system, explicit or implicit,
coincide with the eigenvalues of its zero dynamics, the problem of
zero placement can be assimilated to the problem of defining the
eigenvalues of the zero dynamics.
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There are several circumstances in which one might be inter-
ested in designing an output that induces specific zero dynamics.
In sliding-mode control (SMC), for example, the strategy consists in
two steps: the design of a so-called sliding surface and the design
of the actual control law, whose goal is to bring the system state
onto the sliding surface and constrain the state to slide along it
thereafter [5]. In the SMC literature, the system behavior when
sliding along the sliding surface is called the sliding dynamics. A
closer look at the methodology reveals that the sliding dynamics
are nothing else than the zero dynamics of a virtual output, called
the sliding variable. A usual recipe to the design of the sliding
surface is the application of a formula by Ackermann and Utkin [6].
The two-step approach results in a controlled system which is
completely insensitive to a large class of external disturbances.
From an application point of view, this robustness presents an
advantage over the simpler strategy consisting on the application
of Ackermann’s formula directly (i.e., as opposed to Ackermann-
Utkin’s formula) in order to specify the eigenvalues of the dynamics
on the entire state-space (i.e., as opposed to the lower-dimensional
sliding surface).

The original formula by Ackermann and Utkin is restricted to
sliding surfaces of co-dimension one, which implies that the sliding
variable has relative degree one. This is natural in the context
of conventional SMC, since step two requires the sliding variable
to have relative degree precisely equal to one. However, modern
(higher-order) SMC removes the restriction on the relative degree
of the sliding surface in step two. It is then reasonable to adjust step
one and aim at sliding surfaces with desired sliding dynamics and
of co-dimension higher than one. This motivates the generalization
of the formula by Ackermann and Utkin presented in [7]. The
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objective of this paper is to further extend the formula to the case
of regular LTI implicit systems.

A formula to design a stabilizing state feedback for completely
controllable (C-controllable) implicit systems, based on Acker-
mann’s formula for explicit systems, can be found in [8]. Such
formula does not require the implicit system to be in the so-called
Weierstrass or quasi-Weierstrass form. Obviating the need to use
Weierstrass’ form, which can be thought of as a generalization of
Jordan’s form, represents an advantage in practical terms, since
similarity transformations can sometimes induce large errors in
the presence of parameter uncertainties [9]. The formula pro-
posed here is more general, as it works for R-controllable systems
(R-controllability is weaker than C-controllability) and serves to
specify the zero dynamics instead of the system dynamics in the
complete state space.

Other than the higher-order SMC application mentioned above,
the main result can also be used to design an output such that the
system is minimum phase and has relative degree one or zero. The
closed loop is thus feedback equivalent to a passive system and any
passivity-based techniques can be used to control it.

The paper structure is as follows: In Section 2 we introduce the
basic theory for singular systems and state the problem formally.
The main result is presented in Section 3. In Section 4 we analyze
the implications of our main result in the stabilization problem of
implicit systems and present a concrete example. Conclusions and
future work are presented in Section 5.

2. Preliminaries

Consider the single-input LTI implicit system
Ex = Ax+ Bu (1a)
y = Cx, (1b)

where x € R" and u, y € R are the state, the control input and the
output at time t, respectively (we omit the time arguments to ease
the notation). The matrices E, A € R"™" and B € R™*! are constant
and given. We have rank E = ng < n. The output matrix C € R*",
not given a priori, will be specified later.

Definition 1 ([10]). For any two matrices E, A € R™", the pencil
ME — A is called regular if the determinant det (AE — A) does not
vanish identically.

If det (\E — A) = 0 or if the matrices are non square, then the
pencil is called singular [10]. System (1a) is called solvable if, for
any admissible input and any given admissible initial condition,
Eq. (1a) has a unique solution [11]. This happens when the pencil
ME — A is regular [10]. In such a case, the implicit system (1a) is
called a regular implicit system.

An implicit system is regular if, and only if, there exist non-
singular matrices L and R such that, by applying the coordinate
transformation

[Xs] =R'X, xeRM, x eR™,

Xf
and multiplying (1a) on the left by L we obtain

Xs = AsXs + Bsu (2a)
N).(f = X + Bru, (2b)

where N is nilpotent with index of nilpotence q (see [12] for
details). System (1a) is called an implicit system with index q, for
short. If the matrices A; and N are in Jordan form, then system (2) is
said to be in Weierstrass form [10], otherwise, system (2) is said to
be in quasi-Weierstrass form [13]. Recall that degdet (AE — A) =
n; < n, where the function deg represents the degree of a poly-
nomial [12]. The set of finite eigenvalues of a matrix pair (E, A) is
denoted as A(E,A) = {11, A2, ..., An, }.

The solution of subsystem (2a) can be easily determined from
well-known results on explicit systems [14]. The solution of Sub-
system (2b) depends affinely on u and its first — 1 time derivatives
[12,15,11]. Let U be the set of admissible input functions. In order
to assure the continuity of X; we require j = max{i e N
ImB; & kerN'} and U = ¢/, where ker N' is the null space of the
matrix N’ and Im By is the image of By. Notice thatj < q — 1.

Definition 2 ([16]). A regular pencil M:; —A is in standard form if
there exist scalars « and 8 such that «FE + SA = I, where I is the
identity matrix.

By definition, for any regular pencil AE — A there always exists
a scalar p such that det (L.E — A) # 0. Taking any such p and
multiplying (1a) on the left by L = (1E — A)~! gives

Ex = Ax + Bu. (3)

It is not difficult to verify that the pencil AE — A is in standard form
for = p and B = —1. The representation (3) is called a standard
form of the regular implicit system (1a) [16]. Thus, for regular
systems the assumption of a standard form is always without loss
of generality. Also, since (1), (2) and (3) are restricted equivalent
systems [12], we have A(E, A) = A(I, A;) = A(E, A).

Recall that a single-input-single-output LTI regular implicit
system of the form (1) has the transfer function [12]
g(s)=C(sE—A)"'B= @, (4)

8(s)
where the polynomials §(s) = det (sE — A) and n(s) and are the
denominator and the numerator after zero-pole cancellation. We
define the relative degree of (1) as r = deg §(s) — deg n(s).
Now, consider the rational function = € C(s) given by [17,12]

(3)

T (s) =

m—s
Strictly speaking, since 7 is not bijective, its inverse does not exist.

However, we define 77! € C(s)as 7~ '(s) = u — 1/s. Also, we
agree that w(o0) = 0.

Theorem 1 ([12]). Consider a regular system (1) written in standard
form. Let g(s) be its transfer function. For t = m(s) we have

g (1)) = C(x~(r)E — A)"'B = 1g(7)

with g(t) = C(zI — E)"'B.

Let us now turn to the questions of stability and controllability.

Theorem 2 ([12,18]). The regular implicit system (1a) is stable if and
onlyif A(E,A) C C~,whereC™ represents the open left-half complex
plane.

We shall now introduce the concept of reachable state and char-
acterize the set of all possible states reachable from a zero initial
condition. This turns out to be important when distinguishing the
different notions of controllability in regular implicit systems.

Definition 3. For a regular implicit system of the form (2), a
vector x, € R" is said to be reachable if there exists an initial
condition x(0), an input u(-) € ¢, and some t; > 0 such that
[x (1) x ()] =x].
)

Let X;(xs0) be the set of reachable states at time t from the initial
condition x;(0) = xyo. Denote by X; = sto EJR,}]Xt(xso) t_he set of
reachable states at time t from all admissible initial conditions.
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