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a b s t r a c t

In a recent paper Angeli and Efimov (2015), the notion of Input-to-State Stability (ISS) has been
generalized for systems with decomposable invariant sets and evolving on Riemannian manifolds. In
this work, we analyze the cascade interconnection of such ISS systems and we characterize the finest
possible decomposition of its invariant set for three different scenarios: 1. the driving system exhibits
multistability (convergence to fixed points only); 2. the driving system exhibits multi-almost periodicity
(convergence to fixed points as well as periodic and almost-periodic orbits) and the driven system is
assumed to be incremental ISS; 3. the driving system exhibits multiperiodicity (convergence to fixed
points and periodic orbits) whereas the driven system is ISS in the sense of Angeli and Efimov (2015).
Furthermore, we provide marginal results on the backward/forward asymptotic behavior of incremental
ISS systems and on the response of a contractive system under asymptotically almost-periodic forcing.
Three examples illustrate the potentiality of the proposed framework.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Input-to-State Stability (ISS) has been proven a verymeaningful
notion of stability and sensitivity to disturbances for nonlinear
systems [1]. Apart from being a tool for the analysis, ISS has had
a central role in the design of nonlinear feedback systems, with
applications ranging from feedback redesign, small-gain theo-
rems, tracking design, observers, and stabilization under saturated
feedback. One of the major advances in this direction is the sta-
bilization of nonlinear cascades, whose recursive application led
to several constructive design methods such as backstepping and
forwarding [2]. Indeed, in many cases of interest, the cascaded
decomposition of the system under consideration is advantageous
in providing the explicit stabilizing feedback law.Moreover, the ISS
property behaves well under composition: a cascade of ISS system
is again ISS, under suitable dissipation rates and gain functions of
the driving/driven system, see [3].

Recently, a generalization of ISS theory for systemswith decom-
posable invariant sets and evolving on Riemannian manifolds [4]
has allowed the stability analysis in presence of inputs for a broader
variety of systems exhibiting many dynamical behaviors of in-
terests, such as multistability, periodic oscillations, almost global
asymptotic stability, just to name a few. In this new setting, the
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decomposable invariant sets are no longer required to satisfy the
Lyapunov stability requirement as long as they retain the global
attractivity property and admit a decomposition without cycles, as
specified inDefinitions 2.1, 2.2 and 2.3 (basically no homoclinic nor
heteroclinic orbits may exist).

Largely inspired by the applications in biological (see the
mitogen-activated protein kinase (MAPK) as an example of cas-
cade) as well as mechanical networks, in this work we study
nonlinear cascades of systems belonging to the class described
above, so that the novel generalized ISS theory can be applied. Not
surprisingly, the ISS property is still conserved under cascade in-
terconnection, under the implicit requirement to specify a compact
invariant set for the cascadewhich is globally attractive and admits
a decomposition without cycles. In particular, we characterize
the finest possible decomposition of such invariant set in three
different scenarios. In the first one, the driving system is assumed
to exhibit multistable behavior, that is asymptotic convergence
of all trajectories to fixed points only; the results provided by
Thieme [5] for asymptotically autonomous semiflows turn out to
be crucial in the analysis of this setting. In the second scenario, the
driving system is assumed to have fixed points as well as periodic
orbits and almost-periodic attractors (multi-almost periodicity),
whereas the driven system is assumed to satisfy the incremental
ISS property [6]. Indeed, incremental ISS is a very natural option for
the analysis of this scenario. In the third scenario, the incremental
ISS requirement for the driving system is relaxed to only ISS in the
sense of [4]. It is within latter scenario that inferring ISS of the
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cascades comprises particularly novel results concerning the so-
called converging-input-converging-state (CICS) [7,8] for systems
under asymptotically periodic forcing.

The rest of the paper is organized as follows. Section 2 intro-
duces the notion of decomposable invariant set and the class of
cascade systems under consideration. Sections 3 and 4 respectively
address the first and second scenarios (multistability and multi-
almost periodicity). The third scenario is studied in Section 5.
Section 6 collects examples for all three aforementioned scenarios.
Final remarks are collected in Section 7.

Notation. Symbol d(w1, w2) denotes the Riemannian distance
between w1, w2 ∈ Mw . For a point w ∈ Mw , and for a subset
S ⊂ Mw , the set-point distance is defined as:

|w|S = inf
a∈S

d(w, a).

We define the equivalent of the infinity norm of the distance of
signals taking values onMw as follows:

d[a,b](X1(·), X2(·)) := sup
t∈[a,b]

d (X1(t), X2(t)) .

Notation | · | indicates the standard Euclidean norm. For a measur-
able function d : R+ → Rm we define its infinity norm over the
time interval [t1, t2] as

d[t1,t2]

 = esssupt1≤t≤t2 |d(t)|, and denote
∥d∥ :=

d[0,+∞)
.

2. Definitions and main assumptions

2.1. Decompositions and ISS for multistable systems

In this Sectionwewill introduce the notion of decomposition of
a compact invariant set of a nonlinear dynamical system. In fact, as
pointed out in [4], the decomposition of a compact invariant set of
a nonlinear system exhibiting neither homoclinic nor heteroclinic
cycles plays a crucial role when claiming ISS. Moreover, it can be
observed that such assumption automatically rules out a number
of conservative systems (for instance, Hamiltonian systems).

Let M be an n-dimensional connected and geodesically com-
plete Riemannian manifold without boundary. Let D be a closed
subset of Rm containing the origin. Consider the system:

ẇ(t) = F (w(t), d(t)), (1)

where F (w, d) : M × D → TxM is a locally Lipschitz continuous
mapping with state w taking value in M and d(·) any locally
essentially bounded and measurable input signal taking values in
D. We denote byW (t, w; d) the uniquely defined solution of (1) at
time t fulfillingW (0, w; d) = w under the input d(·).

The unperturbed system is defined by the following set of
equations:

ẇ(t) = F (w(t), 0). (2)

We assume that all solutions of (2) are complete1 and that all
(possibly empty) α- and ω-limit sets are compact.

Definition 2.1 (W-Limit Set). Let Ww ⊂ M be a compact invariant
set containing all the α- and ω-limit sets of (2), i.e. α(w) ∪ ω(w) ⊆

Ww for all w ∈ M . Then the set Ww is called an W-limit set for (2).

Definition 2.2 (Decomposition). Let Ww ∈ M be a compact and
invariant set for (2). A decomposition of Ww is a finite, disjoint

1 Without loss of generality, system (1) can be made backward and forward
complete by slowing down the dynamics with ẇ =

1
1+|F (w,d)|g

F (w, d), where g

denotes the Riemannian metric onM .

family of compact invariant sets Ww,1, . . . , Ww,K (the atoms of the
decomposition) such that:

Ww =

K⋃
i=1

Ww,i.

For an invariant setWw , its attracting and repulsing subsets are
defined as follows:

A(Ww) =
{
w ∈ Mw : |W (t, w, 0)|Ww

→ 0 as t → +∞
}
,

R(Ww) =
{
w ∈ Mw : |W (t, w, 0)|Ww

→ 0 as t → −∞
}
.

Define a relation on Ww,i and Ww,j by Ww,i ≺ Ww,j if A(Ww,i) ∩

R(Ww,j) ̸= ∅.

Definition 2.3 (r-Cycle, 1-Cycle, Filtration). Let Ww,1, . . ., Ww,K be
a decomposition of Ww , then:

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct indexes
i1, . . . , ir such that Ww,i1 ≺ · · · ≺ Ww,ir ≺ Ww,i1 .

2. A 1-cycle is an index i such that
[
R(Ww,i) ∩ A(Ww,i)

]
\Ww,i ̸=

∅.
3. A filtration ordering is a numbering of theWw,i so thatWw,i ≺

Ww,j ⇒ i ≤ j.

Existence of an r-cycle for (2) with r ≥ 2 is equivalent to
existence of a heteroclinic cycle, and existence of a 1-cycle implies
existence of a homoclinic orbit.

Assumption 2.4 (No Cycle Condition). The autonomous system (2)
is said to satisfy the no-cycle condition if it has anW-limit setWw as
in Definition 2.1 that admits a finite decompositionwithout cycles,
namely Ww =

⋃K
i=1Ww,i for some non-empty disjoint compact

sets Ww,i, which form a filtration ordering of Ww , as detailed in
Definitions 2.2 and 2.3. Under the specified assumptions, the set
Ww is said to satisfy the no-cycle condition under the flow of (2).

In the following, we recall a particular robustness notion for
system (1) denoted as practical asymptotic gain (pAG) property [4].

Definition 2.5 (pAG). System (1) is said to satisfy the practical
asymptotic gain (pAG) property if there exist a class-K∞ function
η and q ≥ 0 such that, for all w ∈ M and all inputs d(·), solutions
are defined for all t ≥ 0 and the following holds:

lim sup
t→+∞

|W (t, w; d)|Ww
≤ η(∥d∥) + q. (3)

If q = 0, then we say that the asymptotic gain (AG) property holds.
If (3) holds with q = 0 and ∥d∥ = 0, we say that the systems (1)
and (2) satisfy the global zero-attractivity (0-GATT) property.

The generalized notion of ISS for multistable systems in [4]
replaces the Lyapunov stability requirement with Assumption 2.4
and is formalized as follows.

Definition 2.6. System (6) is said to be ISS with respect to the input
d and the invariant set W if and only if W satisfies Assumption 2.4
and (6) has the AG property.

We will then consider a characterization of the ISS property in
Definition 2.6 in terms of a Lyapunov dissipation inequality.

Definition2.7 (ISS-Lyapunov Function). A C1 functionV : M → R is
a practical ISS-Lyapunov function for (6) if there exist K∞ functions
α1, α, γ and q ≥ 0 such that, for all w ∈ M and all d ∈ D, the
following holds:

α1(|w|Ww
) ≤ V (w) (4)

DV (w)F (w, d) ≤ −α(|w|Ww
) + γ (|d|) + q. (5)



Download	English	Version:

https://daneshyari.com/en/article/5010658

Download	Persian	Version:

https://daneshyari.com/article/5010658

Daneshyari.com

https://daneshyari.com/en/article/5010658
https://daneshyari.com/article/5010658
https://daneshyari.com/

