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a b s t r a c t

In this work, we develop a novel fault detection and isolation (FDI) scheme for discrete-time two-
dimensional (2D) systems that are represented by the Fornasini–Marchesini model II (FMII). This is ac-
complished by generalizing the basic invariant subspaces including unobservable, conditioned invariant
and unobservability subspaces of 1D systems to 2D models. These extensions have been achieved and
facilitated by representing a 2Dmodel as an infinite dimensional (Inf-D) system on a Banach vector space,
and by particularly constructing algorithms that compute these subspaces in a finite and known number of
steps. By utilizing the introduced subspaces, the FDI problem is formulated and necessary and sufficient
conditions for its solvability are provided. Sufficient conditions for solvability of the FDI problem for 2D
systems using both deadbeat and LMI-based filters have also been developed. Moreover, the capabilities
and advantages of our proposed approach are demonstrated by performing an analytical comparisonwith
the currently available 2D geometric methods in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional (2D) systems have received considerable in-
terest and attention fromvarious researchers, particularly from the
system control theory community. For example, by discretizing
spatial and time coordinates, one can approximate PDE systems
by 2D systems [1]. Moreover, linear repetitive control systems can
be modeled as 2D systems [2]. However, there are only a few
results on fault detection and isolation (FDI) of 2D systems in the
literature, as in dead-beat filters [3] and parity equations [4,5].

The geometric control theory [6,7] has provided a valuable
tool for addressing the FDI problem of a large class of dynamical
systems such as parabolic PDE systems [8,9], Markovian jump
systems [10] and linear impulsive systems [11]. In this paper, we
investigate the FDI problem of 2D systems by using a geometric
methodology.

The geometric theory of 2D systems has recently attracted
much interest, where basic concepts such as invariant subspaces
are studied in detail for the Fornasini and Marchesini model I
(FMI) [12,13]. The geometric FDI approach for 2D systems, for the
first time, was addressed in [1], where invariant subspaces of the
Roessermodel are defined and the FDI problem is formulatedbased
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on these subspaces. In this paper, we investigate observability of
2D systems from a new geometric point of viewwhich has its roots
in system theory of infinite dimensional (Inf-D) systems defined on
a Banach vector space.

Compared to results reported in [1,14], we have specific gener-
alization and novel contributions in this work. We first investigate
the Fornasini and Marchesini model II (FMII) as an Inf-D system
that allows us to deal with Inf-D subspaces. In addition, in [1] by
utilizing the existence of an LMI-based observer only sufficient
conditions for solvability of the Roesser model FDI problem were
provided. In other words, the procedure to design the observer
gains is not provided in [1,14]. However, in our paper, we derive
both necessary and sufficient conditions, where sufficient condi-
tions are based on (a) an ordinary, (b) a delayed deadbeat, and
(c) an LMI-based 2D Luenberger filters. Moreover, we develop a
procedure to design LMI-based filter gains.

It should be pointed out that a related work has appeared
in [15], where solvability of the FDI problem for three-dimensional
(3D) FMII models is considered. The geometric FDI methodology
that is developed in [15] is analytically investigated in Section 4.1,
where it is shown that our proposed method is more general than
the approach in [15].

Another approach that was developed in the literature [3,5] has
its roots in 2D deadbeat filters [16]. In [3], by using polynomial
matrices and unknown input deadbeat observers, it was shown
that the solvability of the FDI problem (and estimating the fault
severities) is equivalent to the right zero primeness of the 2D
Popov–Belevitch–Hautus (PBH) matrix. In [5], this condition was
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relaxed and necessary and sufficient conditions that are based on
an extendedparity equation approachwere obtained.Weuse these
results to provide a novel geometric FDI scheme for 2D systems.

To summarize, the main contributions of this paper can be
stated as follows:

(1) Investigate and introduce the Inf-D conditioned invariant
and unobservability subspaces by utilizing a Fin-D represen-
tation.

(2) Develop an LMI-based methodology to design a 2D Luen-
berger observer for FDI of 2D systems.

(3) Derive the necessary and sufficient conditions for solvability
of the FDI problem by using (a) the delayed, (b) the ordinary
deadbeat, and (c) the 2D Luenberger filters.

(4) Analytically compare our proposed methodology with the
available geometric FDI approach of 2D systems in the liter-
ature [15].

It should be pointed out that due to space limitations simulation
results are not includedhere. However, these simulations aswell as
additional explanations can be found in the full electronic version
of our paper in [17].
Notation:WeuseA , B, . . . to denote subspaces. For a given vector
L, the subspace span{L} is denoted by L . The inverse image of the
subspace V with respect to the operator A is denoted by A−1V . The
block diagonal matrix is denoted by diag(A, B). The real, complex,
integer and positive integer numbers are denoted byR,C, Z andN,
respectively. N denotes the set N ∪ {0}. In this paper, we deal with
Inf-D subspaces and vectors. An Inf-D vector is designated by the
bold lettersx, y, . . . . The Inf-D subspace · · ·⊕V ⊕V ⊕· · · is denoted
by ⊕V , where V ⊆ Rn. Let x = (xk)k∈Z = (. . . , xT

−1, x
T
0, x

T
1, . . .)

T
⊆

⊕V and |x|∞ = supi∈Z|xi|, where xi ∈ V . The vector space V∞ =∑
V is defined as {x|x ∈ ⊕V and |x|∞ < ∞}. It can be shown that

V∞ is a Banach (but not necessarily Hilbert) space. Other notations
are provided within the text as appropriate.

2. Preliminary results

In this section, we first review the FMII formulation of a 2D
system subjected to faults. Subsequently, a 2D system is expressed
as an Inf-D system defined on the corresponding Banach vector
space. This representation allows one to geometrically analyze
the unobservable subspace and one of its subspaces (this is to
be defined and specified in the next section). The FDI problem is
also formulated in this section. Moreover, we review the 2D PBH
matrix and 2D deadbeat observers. Finally, an LMI-based approach
is introduced to design a 2D Luenberger observer (also known as a
detection filter) for 2D systems.

2.1. Discrete-time 2D systems

In this work, we consider and concentrate on the FMII that in-
cludes Roessermodel and FMImodel as special cases [18]. Consider
the following FMII model [18],

x(i + 1, j + 1) = A1x(i, j + 1) + A2x(i + 1, j)

+ B1u(i, j + 1) + B2u(i + 1, j) +

p∑
k=1

L1k fk(i, j + 1)

+

p∑
k=1

L2k fk(i + 1, j),

y(i, j) = Cx(i, j), i, j ∈ Z, (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rq denote the state, input and out-
put vectors, respectively. The fault signals and the corresponding
fault signatures are designated byfk, L1k and L2k , respectively. Also, p

denotes the number of faults in the system. Since in this work all
the introduced invariant subspaces are based on the operators A1,
A2 and C , we designate the system (1) by the triple (C, A1, A2).

It is assumed that A1 and A2 in model (1) are not necessarily
commutative (i.e. A1A2 ̸= A2A1), and hence, the results that are
subsequently developed can also be applied to the Roesser model.

2.2. Infinite dimensional (Inf-D) representation

Consider the fault free system (1), that is with fk ≡ 0, and with
zero input. By considering x(k) = (. . . , x(−1+k, 1)T, x(k, 0)T, x(1+

k, −1)T, . . .)T ∈
∑

Rn, the system (1) can be represented as,

x(k + 1) = Ax(k), k ∈ N
y(k) = Cx(k), (2)

where the global state and outputs are denoted by x(k) ∈ X =∑
Rn, y(k) = (. . . , y(−1 + k, 1)T, y(k, 0)T, y(1 + k, −1)T, . . .)T ∈∑
Rq, respectively. Also,A is an Inf-D matrix with A1 and A2 as di-

agonal and upper diagonal blocks, respectively, with the remaining
elements set to zero, and C = diag(. . . , C, C, . . .). Note that since
we invoke an Inf-D representation to investigate an unobservable
subspace, and where this subspace is defined by only A and C,
therefore to represent the Inf-D system (2), we consider the 2D
system (1) that is subjected to no faults.

There are various formulations for the initial conditions of the
FMII model (1) based on the separation set that is introduced in
[19]. There are two separation sets that are commonly used in the
literature. In the first formulation the initial conditions are denoted
by x(0) = (. . . , x(−1, 1)T, x(0, 0)T, x(1, −1)T, . . .)T ∈

∑
Rn [18]

(this is compatible with the model (2)). The second formulation is
expressed as x(i, 0) = h1(i) and x(0, j) = h2(j), where h1(i), h2(j) ∈

Rn and i, j ∈ N [18]. Given that we derive the solvability conditions
of the FDI problem based on the finite invariant unobservable
subspace (this is defined explicitly in Section 3.1), our proposed
methodology is applicable to both initial condition formulations.
In other words, we use the Inf-D representation to only show
the results and evaluate the developed algorithms. However, to
apply our results there is no need to deal with Inf-D systems and
subspaces, and therefore, one can apply our proposed methods to
2D systems corresponding to both initial condition formulations.
For more detail, refer to Remark 4.

The system theory corresponding to Inf-D systems is signifi-
cantly more challenging than Fin-D systems (1D systems) (refer to
[20]). However, as shown subsequently, the operatorA is bounded
and consequently, one can readily extend the result of 1D systems
to the Inf-D system (2) [20]. Let us first define the notion of
bounded operators.

Definition 1 ([20]). Consider the operator A : X1 → X2, where
X1 and X2 are Banach vector spaces with the norms | · |1 and
| · |2, respectively. The operator A is bounded if there exists a real
number G such that |Ax|2 ≤ G|x|1 for all x ∈ X1.

Lemma 1. The operator A as defined in the Inf-D system (2) is
bounded.

Proof. Let G = 2max(|A1|, |A2|), where |Ai| denotes the norm of Ai
and x = (xk)k∈Z ∈ X . It follows readily that |Ax|∞ = sup

k∈Z
|A1xk +

A2xk+1| ≤ sup
k∈Z

[Gmax(|xk|, |xk+1|)] = Gsup
k∈Z

|xk|. Therefore, |Ax|∞ ≤

G|x|∞. This completes the proof of the lemma.

Remark 1. Although, in [21] all the results such as the controlled
invariant subspaces are presented on Rn, the developed approach
in [21] has its roots in the theory of systems over rings. In this
paper, we propose an alternative approach that is based on Inf-
D systems that are defined on a Banach vector space. Similar to
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