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a b s t r a c t

We consider the problem of allocating a fixed amount of resource among nodes in a network when each
node suffers a cost which is a convex function of the amount of resource allocated to it. We propose a new
deterministic anddistributed protocol for this problem.Ourmain result is that the associated convergence
time for the global objective scales quadratically in the number of nodes on any sequence of time-varying
undirected graphs satisfying a long-term connectivity condition.
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1. Introduction

Weconsider the problemof optimally allocating a fixed amount
of resource among n agents. Each agent suffers a convex cost as
a function of the amount of resource allocated to it and the goal
is to distribute the resource among the agents to minimize the
total cost incurred. Sometimes the problem is described in terms
of utilities, with each agent having a concave utility function and
the goal being to maximize the total utility.

Our goal is to develop distributed protocols for this problem,
meaning that nodes are only allowed to interact with neighbors
in some graph or some time-varying sequence of graphs. Our
motivation comes from potential applications in sensor networks,
which regularly face the problems of optimally allocating com-
munication bandwidth and computing power [1]. Furthermore,
resource allocation is a simplification of the important ‘‘economic
dispatch’’ problem wherein geographically distributed producers
of electricity must coordinate to meet a fixed demand [2–4].

The problem has an old history dating back to the classic work
of Arrow and Hurwicz [5]. The first algorithm which could be
implemented in a distributed way was the ‘‘center-free’’ protocol
of [6]. In the protocol of [6], each node increases the amount of
resource allocated to it proportionally to the difference in gradients
between its neighbors and itself. It was shown in [6] that, under ap-
propriate technical conditions, this protocol will drive the amount
of resource allocated to each node to the optimal value. The term
‘‘center-free’’ was originally meant to refer to the absence of any
central coordinating authority, though in this paper we will use it
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to mean any update wherein nodes update the amount of resource
by looking at gradient differences with neighbors. The work of [6]
has spawned a number of modern follow-ups, including [6–11] as
well as the current paper.

The paper [7] considered the resource allocation problem in the
context of optimal distribution of a database among the nodes of
the network; some modifications of the algorithm of [6] which
used not only gradient differences but also the second derivatives
of the cost functions were proposed. More recently, [8] studied the
case when the cost functions are strongly convex and noted that
the problem of optimal weight selection for center-free methods
can be cast as a semidefinite program. The work of [9] analyzed a
natural class of center-freemethods on time-varying networks and
provided a convergence analysis. The recent paper [10,11] studied
the convergence rates of distributed protocols which repeatedly
choose a random pair of neighboring nodes and perform a center-
free update on that pair. Finally, the work of [12] used accelerated
gradient methods to design distributed protocols for a more gen-
eral problem.

Our focus in this paper is on designing protocols with good con-
vergence speed. Specifically, we are interested at how the gap to
the optimal objective value scales in the worst-case with iteration
k and the number of nodes n in the system.

The best previously known results were provided in the an-
tecedent papers [9,11]. Both papers considered the class of costs
which have Lipschitz-continuous derivatives. The paper [11] con-
siders schemes which randomly pick pairs of neighbors to perform
a center-free update; if the pairs are chosen uniformly at random
the convergence time implied by the results of [11] is O(Ln4/k) in
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expectation1 on fixed graphs; here L is the largest of the Lipschitz
constants of the derivatives of the cost functions. However, we
note here that it is possible to shave off a factor of n off this
bound by adjusting the probabilities in a graph-dependent way.
The paper [9] does not give an explicit convergence rate for the
objective, but gives a worst-case O(LBn3/k) rate for the decay of
the average of squared gradient differences in the graph; here B
is a constant which measures how long it takes for the time-
varying graph sequence to reach connectivity. Improved rateswere
obtained in [13] and in [14] for a more general problem, but under
the assumption that the graph is a fixed complete graph.

In this paper, we show a convergence rate of O
(
LBn2/k

)
for

the objective under the same assumptions of Lipschitz-continuous
derivatives in the more general setting of time-varying graphs.
Additionally, when the costs are strongly convex, we demonstrate
a geometric rate of O

((
1 − µ/(4Ln2)

)k/B) where µ is the param-
eter of strong convexity. For both of these rates, the number of
iterations until the objective is within ϵ of its optimal value scales
quadratically with the number of nodes n. This is an improvement
over the results described above, though we note that our pro-
tocol involves every node contacting its neighbors and perform-
ing an update at every step (which involves O(|E(t)|) messages
exchanged, where E(t) is the set of edges at time t , and O(n)
updates); whereas [11] relied on only a pair of randomly chosen
nodes updating at each step.

The remainder of this paper is organized as follows. We give
a formal statement of the problem in Section 2. Our protocol is
described in Section 3. The convergence analysis of the protocol
is in Section 4. Finally, Section 5 describes the results of some
simulations and we conclude in Section 6.

2. Problem formulation

In this paper, we study distributed protocols for the following
minimization problem,

min
n∑

i=1

fi(xi) (1)

s.t.
n∑

i=1

xi = K .

We assume that there are n agents or nodes whichwewill index as
1, . . . , n, that fi : R → R is a convex function known only to node i
and xi ∈ R is a variable stored by node i, and finally that K is some
nonnegative number.

As remarked, this models a resource allocation problem among
n agents: given a finite amount K of a certain resource, we must
allocate it among agents 1, . . . , n in an optimal way.

For simplicity, we introduce notation for the total objective
function F (x) =

∑n
i=1fi(xi), and the feasible set S = {x ∈ Rn

:∑n
i=1xi = K }.
We assume that a sequence of time-varying undirected graphs

models the communication between the nodes. Specifically, we
assume we are given a sequence of undirected graphs G(k) =

(V, E(k)) with V = {1, . . . , n}; nodes i and j can send exchange
messages at time k if and only if (i, j) ∈ E(k). We denote by Ni(k)
the set of neighbors of node i at time k.

We make the following fairly standard assumption which en-
sures that the graph sequence G(k) satisfies a long-term connec-
tivity property.

1 The convergence rate in [11] is given in terms of the eigenvalues of a certain
matrix; the quartic bound above follows by putting [11] together with the well-
known fact that the smallest eigenvalue of the Laplacian of a connected, undirected
graph on n is Ω(1/n2).

Assumption 1. There exists an integer B ≥ 1 such that the
undirected graph

(V, E(ℓB) ∪ E(ℓB + 1) ∪ · · · ∪ E((ℓ + 1)B − 1)) (2)

is connected for all nonnegative integers ℓ.

We will also be assuming that each local objective function fi(·)
is differentiable with Lipschitz continuous derivative.

Assumption 2. For each i = 1, . . . , n, the function fi(·) is differen-
tiable everywhere and there exists a constant Li such that

|f ′

i (yi) − f ′

i (xi)| ≤ Li|yi − xi|, ∀xi, yi ∈ R.

Moreover, we will be assuming that there exists at least one
optimal solution.

Assumption 3. There exists a vector x∗
= (x∗

1, x
∗

2, . . . , x
∗
n) with

x∗
∈ S which achieves the minimum in problem (1).

Wewill useX ∗ to denote the set of optimal solutions to problem
(1); the previous assumption ensures that X ∗ is not empty.

Finally, we will be assuming that our algorithm starts from a
feasible point.

Assumption 4. x(0) ∈ S.

For the remainder of this paper, we will be assuming that Assump-
tions 1–4 hold without mention.

We conclude this section with a characterization of the points
in the optimal set X ∗; the proof is immediate.

Proposition 1. We have that x ∈ X ∗ if and only if x ∈ S and
f ′

i (xi) = f ′

j (xj) for all i, j ∈ {1, . . . , n}.

3. Main algorithm

In this section, we will introduce a distributed protocol, which
we call the gradient balancing protocol, to solve problem (1).
Before giving a statement of the algorithm, we provide some brief
motivation for its form.

Previous protocols for problem (1) tended to be ‘‘center-free’’
updates [6,8,9,11] where node i updated as

xi(k + 1) = xi(k) −

∑
i∈Ni(k)

wij
(
f ′

i (xi(k)) − f ′

j (xj(k))
)
, (3)

where wij is a collection of nonnegative weights. The protocol of
[11] had a different form but proceeded in the same spirit; in that
protocol, edges were repeatedly chosen according to some proba-
bility distribution and a form of the above update was performed
by the incident nodes.

The protocol we propose in this paper speeds up this update
by employing some local ‘‘pruning’’ wherein each node tries to
perform a version of Eq. (3), but only with the two nodes whose
derivative is largest and smallest in its neighborhood. Thus nodes
essentially ignore neighbors whose derivatives are close to their
own. Intuitively, by focusing on nodes whose derivatives are far
apart we increase the speed at which information propagates
through the network. The idea has been previously used in [15]
and is inspired by an algorithm from Chapter 7.4 of [16].

We now describe the steps node i executes at step k to update
its value from xi(k) to xi(k + 1). We assume that all nodes execute
these steps synchronously, and furthermore that all four steps of
the protocol given below can be executed before the graph changes
from G(k) to G(k + 1). Speaking informally, the protocol consists
of each node repeatedly trying to ‘‘match’’ itself to the node in its
neighborhood whose derivative is smallest and smaller than its
own in order to perform a center-free update.
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