
Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier.com/locate/apacoust

Quantitative analysis for acoustic characteristics of porous metal materials
by improved Kolmogorov’s turbulence theory

Xiao Liang, Jiu Hui Wu⁎, Guojian Zhou
State Key Laboratory of Mechanical Structural Strength and Vibration, School of Mechanical Engineering of Xi'an JiaoTong University, Xi'an 710061, China

A R T I C L E I N F O

Keywords:
Porous metal materials
Sound absorbing property
Improved Kolmogorov’s turbulence theory
Catastrophe theory

A B S T R A C T

This paper investigates the sound absorbing property of porous metal materials quantitatively using turbulence
analogy model. Firstly, the improved Kolmogorov’s turbulence theory is obtained by catastrophe theory for the
first time, to our knowledge. Secondly, a quantitative turbulence analogy model is proposed though the im-
proved Kolmogorov’s turbulence theory. Finally, this model is adopted to analyze the wave propagation inside
the porous metal materials. The quantitative relationship of energy spectrum density is fully obtained, which is
also related to the average pore diameter and porosity. With the increase of excitation frequency, the energy
spectrum density decreases with certain power law. And the energy increases with the increase of the average
pore diameter. Our theoretical results are consistent with the experimental results. Our study can provide a
feasible theoretical guidance for controlling the vibration and noise of porous metal materials.

1. Introduction

Porous metal materials are widely applied in noise control in var-
ious industries due to their advantages in heat resistance, lightness, and
stiffness and so on [1–3]. In recent years, with the development of
porous metal material preparation process, the acoustic material with
excellent sound absorption characteristics can be obtained by structural
optimization [4].

Biot presented the constitutive and fluctuation control equations of
porous media for analyzing the acoustical properties in 1956 [5,6]. In
1992, the equivalent fluid model has been found by Allard, which
considered the impact of the air viscosity, the heat conduction, and the
structure factor on acoustic wave propagation [7]. More recently, Xu
et al. found that local turbulence effect and volume dissipation are two
important reasons for the transformation of kinetic energy to heat in
porous materials under the excitation of acoustic [8]. Hu et al. studied
the energy dissipation process of the porous materials by the turbulent
like method, and pointed out that the energy spectral density of sound
waves inside porous materials is proportional to the −5/3 power of the
wave number under high frequency acoustic excitation [9]. Zhang et al.
and Wang et al. investigated the sound absorption properties of porous
materials below 150 dB though numerical simulation and experiments
[10,11]. Wu et al. presented a quantitative theoretical model to in-
vestigate the sound absorbing property of metal rubber with high
temperature and high sound pressure based on Kolmogorov’s turbu-
lence theory, and showed that the sound pressure amplitude of the

porous metal material increases with increasing temperature and sound
pressure level [9]. Although these acoustical models could describe the
absorption properties of porous metal materials, unfortunately it cannot
explain the mechanism of energy dissipation. And, due to the limitation
of Kolmogrov’s turbulence theory, the mechanisms of the sound ab-
sorption of porous metal materials under acoustic excitation have been
still not fully understood.

In this paper, a turbulence analogy model is proposed by improved
Kolmogorov’s turbulence theory to investigate the sound absorbing
property of porous metal materials quantitatively. This paper is orga-
nized as follows: In Section 2, the improved Kolmogorov’s turbulence
theory is studied by catastrophe theory. For analyzing the sound ab-
sorbing property of porous metal materials, the turbulence analogy
model is presented in details in Section 3, and the numerical results and
analysis are given in Section 4.

2. Quantitative analysis of the acoustic properties of porous metal
materials by improved Kolmogorov’s theory

The air particles inside the porous materials are in the turbulence
state when the porous material is excited by acoustic wave [9], and the
motion state of air particles transfers from turbulence phase to fully
turbulent phase gradually with the increase of excitation frequency.
Therefore, the acoustic properties of porous metal materials can be
analyzed by turbulence analogy model.
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2.1. Quantitative analysis of the turbulent phase transition by catastrophe
theory

Turbulence produces the vortices of many different length scales.
Most of the kinetic energy of the turbulent motion is contained in the
large-scale vortices. The energy transfer from the largest scale L vortices
to the smaller scales vortices l by an inertial and essentially inviscid
mechanism. This process continues, producing a hierarchy of vortices.
Eventually this process creates the smallest vortices that the viscosity of
the fluid can effectively dissipate the kinetic energy into internal energy
[12].

Kolmogorov introduced the wave number k(l = 1/k) to instead of
scale l, and pointed out that the energy spectral density E(k) is pro-
portional to the −5/3 power of the wave number k in fully turbulence
state [13]. However, the whole process of turbulent phase transition
cannot be solved yet.

Therefore, the process of turbulent phase transition can be revealed
by the scale variation of the vortices. The potential function V(x)
= x4 + tx2 + ux [14] of the cusp catastrophe mode of the catastrophe
theory can describe the scale change rules of turbulent phase transition.
Where x is a state variable, t and u are control variables. Taking the
wave number k(l= 1/k) as the state variable, the equilibrium surface
equation that is the first derivative of potential function, can be ex-
pressed as:

+ + =k tk u 03 (1)

According to Eq. (1), the equilibrium surface shows the rules of phase
transition, as shown in Fig. 1. When the control variable t < 0, a point
P on the equilibrium surface jumps from lower sheet to upper sheet that
represent different phases, meanwhile, the turbulent phase transition
appears [14].

We analyze the control variables t and u by the dimensionless
analysis, and suppose that the control variables t and u are described by
the energy dissipation rate ε, the kinematic viscosity μ, the density ρ,
and the energy spectral density E, with α1, α2, α3, and α4 denoting the
power exponents of ε, μ, ρ, and E, respectively, thus t and u can be
expressed as:
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We use three basic dimensions, time T, length L, and mass M to
describe the relationship among the power exponents. Because the di-
mension of k is [L−1], the dimensions of t and u should be [L−2] and
[L−3] to satisfy Eq. (1), and the relationships among the power ex-
ponents by the dimensionless analysis are listed in Table 1.

The power exponents must satisfy the following relationship
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From Eqs. (2) and (3), the control variables t and u are obtained as:
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where A and B are constants, and the range of A and B should be A < 0
and 0 < B < 1, according to the property of cusp catastrophe model
[14].

On substituting Eq. (4) into Eq. (1), the energy spectral density E has
the form:

= − ⎛
⎝

+ ⎞
⎠

− − +
−

− − +
−

−
E ρ Aε μ k Bε μ k

α α α α α(2 )
4

3(2 3 )
4 2

(4 )
4

3(3 3 )
4 3

1/4 4 4 4 4

(5)

Though analyzing the cusp catastrophe model [14], the two stable
extreme points corresponding to two phases of turbulence, the turbu-
lence phase and the fully turbulence phase, which are α4 =−9/5, and
α4 = −6/5 (B = 0) respectively. On substituting α4 = −9/5 and
α4 = −6/5 (B = 0) into Eq. (5), there are:

= +− −E ρμε k B Aμ ε k( )2/3 5/3 3/4 2/4 1 5/9 (6)

= −E Aρμε k2/3 5/3 (7)

Eq. (6) shows the quantitative relationship of the turbulence phase, and
Eq. (7) expresses the quantitative relationship for the fully turbulence
phase which is in accordance with “−5/3th power” law of Kolmo-
gorov’s theory.

According to Eq. (5), Fig. 2(a) shows the relationship among the
energy spectral density E, coefficient α4 and the wave number k.
Fig. 3(b) shows the relationship between the energy spectral density E
and coefficient α4. In the range of −2 < α4 < −9/5 (region Ⅰ) also
called energy zone, with the increase of velocity, the energy of the fluid
increases gradually due to the energy accumulation, and when
α4 = −9/5, the velocity fluctuation appears firstly in turbulence phase,
which forms the vortices at the largest scale L and cause the transferring
from laminar to turbulence. In the range of −9/5 < α4 < −6/5
(region Ⅱ) also called dissipation zone, the energy gradually decreases,
the largest scale L vortices splits into smaller ones, meanwhile the en-
ergy also transfers to vortices of smaller scale l. And when α4 =−6/5,
the energy transfers to the smallest scale l0 vortices, and in the range of
α4 ≦−6/5 (region III) also called equilibrium zone, the energy is dis-
sipated by viscous motion completely in fully turbulent phase.

2.2. Quantitative analysis of the acoustic properties of porous metal
materials by turbulence analogy model

We analyze the energy spectrum density inside the porous metal
materials by turbulence analogy method. Firstly, by the structural
characteristics of porous metal materials, we suppose that the air in
pores inside the porous metal material is equivalent to the particles of
the particle flow, the metal skeleton is equivalent to the air in the
particle flow, and the porosity of the porous metal material isFig. 1. The equilibrium surface of cusp catastrophe model.

Table 1
Relationships among the power exponents.

ε (α1) μ (α2) ρ (α3) E (α4)

L 2 2 −3 2
T −3 −1 0 3
M 0 0 1 1
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