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a b s t r a c t

It is noted that the existing time-domain implementation structure for steerable spherical modal beam-
formers is only applicable to the specific beamformers with rotationally symmetric beampatterns about
the look direction, which may limit its applications. To overcome the restriction, this paper presents an
alternative time-domain implementation structure for spherical modal beamformers using the Wigner-D
function, which enables three-dimensional beam steering with arbitrary patterns. In particular, a neces-
sary condition for guaranteeing only real-valued operations to make the time-domain implementation
viable is derived. Design examples are presented to demonstrate the effectiveness of the presented
time-domain modal beamformer structure.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Spherical microphone arrays are able to analyze three-
dimensional (3-D) sound fields effectively and facilitate array signal
processing in the spherical harmonics domain, thus have found a
variety of applications such as sound field reproduction, beamform-
ing, sound localization, and noise reduction, acoustic absorption
measurement, among others [1–5]. Spherical array beamforming
in the spherical harmonics domain, also known as spherical modal
beamforming, offers several advantages when compared with con-
ventional beamforming in the element-space domain [6]. One of the
advantages of spherical modal beamforming is that beampattern
design can be decoupled from beampattern steering in the spherical
harmonics domain, which results in efficient implementation of
steerable modal beamformers in 3-D space.

Spherical modal beamformers can be implemented either in the
frequency domain or in the time domain. In comparison to the
time-domain implementation, the frequency-domain implementa-
tion is usually block-based processing with the discrete Fourier
transform and it may not be suitable for time-critical speech and
audio applications due to its associated time delay [7]. It is noted
that the frequency-domain implementation approaches for beam
steering of spherical modal beamformers with arbitrary beampat-
terns have been available in the literature [8,9]. In contrast, how-
ever, the existing time-domain implementation approach for

steerable spherical modal beamformers is only applicable to the
specific beamformers, i.e., the beampatterns should be rotationally
symmetric [7], which may limit its applications. By rotationally
symmetric, it means that the beampattern is rotationally invariant
with respect to the look direction, i.e., the beampattern will not
change when rotated at an arbitrary angle along the look direction.
In contrast, non-rotationally symmetric implies that the beampat-
tern will change when rotated along the look direction. In some
practical applications, however, a non-rotationally symmetric
beampattern may be desired. For instance, as noted in [8], the
recording of sound sources of interest in an auditorium with a
spherical array placed at the seating area requires a mainlobe that
is wide along the azimuth dimension but narrow along the eleva-
tion dimension to cover the entire stage. Inspired by the Wigner-D
function [6], a time-domain implementation structure for spherical
modal beamformers which enables 3-D beam steering with arbi-
trary patterns is developed in this paper. In particular, a necessary
condition for guaranteeing only real-valued operations to make the
time-domain implementation viable is also derived. The advantage
of the proposed structure is that it is applicable to not only rota-
tionally symmetric beampatterns but also to non-rotationally sym-
metric beampatterns in the time-domain implementation.

2. Spherical modal beamforming

The standard spherical ðr; h;/Þ coordinate system is used
hereafter, where h and / denote elevation and azimuth angles,
respectively [10]. Consider a unit magnitude plane wave with wave
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number k impinging on a sphere of radius a from direction
X ¼ ðh;/Þ, where k ¼ 2pf=c with f denoting the frequency and c
the speed of sound. Then, the frequency-domain expression of
the sound pressure at a point Xs ¼ ðhs;/sÞ on the sphere surface
can be expressed as [11]:

p ka;X;Xsð Þ ¼
X1
n¼0

Xn
m¼�n

bn kað ÞYm�
n Xð ÞYm

n Xsð Þ ð1Þ

pnm ka;Xð Þ ¼ bn kað ÞYm�
n Xð Þ ð2Þ

where Ym
n Xð Þ is the spherical harmonic of order n and degree m,

which is defined as follows [13]:

Ym
n Xð Þ ¼ Ym

n h;/ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
4p

n�mð Þ!
nþmð Þ!

s
Pm
n cos hð Þejm/ ð3Þ

where ð�Þ! denotes the factorial function, Pm
n ð�Þ are the associated

Legendre functions, and j ¼
ffiffiffiffiffiffiffi
�1

p
. The superscript ⁄ denotes com-

plex conjugation. The mode strength bn kað Þ for order n is related
to both frequencies and sphere configurations [1]. pnm ka;Xð Þ are
the spherical harmonic coefficients of p ka;X;Xsð Þ which are
obtained by performing the spherical Fourier transform [12]:

pnm ka;Xð Þ ¼
Z
Xs2S2

p ka;X;Xsð ÞYm�
n Xsð ÞdXs ð4Þ

where the integral
R
Xs2S2 dXs ¼

R 2p
0

R p
0 sin hsdhsd/scovers the entire

surface of the unit sphere S2. In practice, since the number of micro-
phones mounted on a sphere is usually limited, the microphone
positions are required to satisfy the following discrete orthonormal-
ity condition

XM
s¼1

asY
m�
n Xsð ÞYm0

n0 Xsð Þ ¼ dn�n0dm�m0 ð5Þ

where dn�n0 and dm�m0 are the Kronecker delta functions, as are real-
valued parameters depending on the spatial sampling scheme, and
M denotes the number of microphones. Then, (4) can be approxi-
mated by its discrete version

pnm ka;Xð Þ ¼
XM
s¼1

asp ka;X;Xsð ÞYm�
n Xsð Þ: ð6Þ

Accordingly, the array order is limited to N which satisfies

N þ 1ð Þ2 6 M [14].
By the discrete spherical Fourier transform for the sound pres-

sure samples, the beampattern which is the array’s response to a
unit input signal from X can be expressed in the spherical harmon-
ics domain as [14]:

B f ;Xð Þ ¼
XN
n¼0

Xn
m¼�n

pnm ka;Xð Þw�
nm fð Þ ð7Þ

where wnm fð Þ are the spherical Fourier coefficients of the array
weights w f ;Xsð Þ.

3. Main results

The 3-D rotation of the beampattern B f ;Xð Þ can be achieved by
using the Wigner-D function and the rotated beampattern can be
expressed as [8,6]

Br f ;Xð Þ ¼ K a;b; cð ÞB f ;Xð Þ

¼
XN
n¼0

Xn
m¼�n

bn kað Þ
Xn

m0¼�n

Dn�
m0m a;b; cð ÞYm0�

n Xð Þw�
nm fð Þ

¼
XN
n¼0

Xn
m0¼�n

bn kað ÞYm0�
n Xð Þwr�

nm0 fð Þ ð8Þ

where wr
nm0 fð Þ ¼ Pn

m¼�nD
n
m0m a;b; cð Þwnm fð Þ are the rotated array

weights, K a;b; cð Þ denotes the rotation operation, ða;b; cÞ repre-
sents the rotation angle, and Dn

m0m a;b; cð Þ is the Wigner-D function
defined as

Dn
m0m a;b; cð Þ ¼ e�jm0adn

m0m bð Þe�jmc ð9Þ

with dn
m0m bð Þ denoting the real-valued Wigner-d function which can

be written in terms of the Jacobi polynomial [15]:

dn
m0m bð Þ ¼ 1m0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s! sþ lþ vð Þ!
sþ lð Þ! sþ vð Þ!

s
sin b=2ð Þ½ �l cos b=2ð Þ½ �vP l;vð Þ

s cosbð Þ

ð10Þ

where l ¼ m0 �mj j;v ¼ m0 þmj j; s ¼ n� lþ vð Þ=2, and 1m0m ¼ 1

when m P m0; 1m0m ¼ �1ð Þm�m0
when m < m0.

3.1. Proposed time-domain beamformer structure

According to (8) and [8], the structure for a steerable spherical
modal beamformer usually consists of three stages: modal trans-
formation, beam steering, and pattern forming. Denote
xsðlÞ ¼ xsðtÞjt¼lTs as the discrete-time series received at the sth
microphone, where Ts denotes the sampling interval. Note that
the spherical harmonics are independent of frequency. Performing
the spherical Fourier transform to xsðlÞ yields the modal transfor-
mation of xsðlÞ

xnm0 ðlÞ ¼
XM
s¼1

asxsðlÞYm0
n

�ðXsÞ ð11Þ

Denote the real and imaginary parts of xnm0 ðlÞ as

~xnm0 ðlÞ ¼
XM
s¼1

asxsðlÞRe½Ym0
n ðXsÞ� ð12Þ

x
smile

nm0 ðlÞ ¼
XM
s¼1

asxsðlÞIm½Ym0
n ðXsÞ� ð13Þ

where Re �ð Þ and Im �ð Þ stand for the real and imaginary parts, respec-
tively. Then, (11) can be expressed as

xnm0 ðlÞ ¼ ~xnm0 ðlÞ � j x
smile

nm0 ðlÞ ð14Þ
With beam steering in the spherical harmonics domain using

the Wigner-D function, xnm0 ðlÞ now becomes

xrnmðlÞ ¼
Xn

m0¼�n

Dn�
m0m a; b; cð Þxnm0 lð Þ ð15Þ

In frequency-domain implementation for spherical modal
beamformers, a set of complex-valued array weights wnm fð Þ are
employed in the pattern forming stage. In contrast, for time-
domain implementation, the complex-valued array weights
wnm fð Þ are replaced by a bank of finite impulse response (FIR) fil-
ters with real-valued coefficients such that

w�
nm fð Þ ¼ hT

nme fð Þ ð16Þ

where hnm ¼ h1
nm; h

2
nm; . . . ;h

L
nm

h iT
is the impulse response of the FIR

filter corresponding to the spherical harmonics of order n and
degree m, the superscript T denotes the transpose, and L is the tap

length of each FIR filter. And e fð Þ ¼ 1; e�j2pfTs ; . . . ; e�j L�1ð Þ2pfTs
� �T

.
Accordingly, the output time series of the beam-steered beamform-
ers can be expressed as
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