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a b s t r a c t

This paper presented a theoretical study of the vibration control of a floating raft system using periodic
structures. The band gap properties of the periodic structures, the power flow and the power transmis-
sibility of the floating raft system were investigated by using the transfer matrix method. To minimize the
power flow through periodic structures in a floating raft system, the geometrical parameters of the peri-
odic structures were optimized by using a genetic algorithm. The numerical results demonstrated that
the optimum periodic structure can provide broader stop band regions. The stop band regions of the opti-
mum periodic structure contained all the harmonic frequencies of the force excitation in the floating raft
system. The numerical results validated that the proposed optimization approach is sufficiently capable
for the design of periodic structures. The proposed optimization approach has potential use for the devel-
opment of vibration and shock isolation systems such as floating raft systems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The floating raft systems, a kind of two-stage vibration isolation
system, have been widely applied to ships and submarines to
improve acoustic stealth performances [1,2]. Rotatory machines
such as: diesel engines, pumps, and electric generators were
installed on floating raft systems. Noise and vibration of rotatory
machines were generally dominated by peaks at the rotational fre-
quency, blade pass frequency, and their various harmonics in the
frequency spectra. Therefore, in the design of noise and vibration
systems, more concerns were focused on these frequencies.

Comprehensive efforts have been made in the investigation of
the propagation of waves in periodic structures that consisted of
several identical structural components [3–5]. Waves transmitted
in periodic structures have shown the existence of stop band and
pass band regions in the frequency spectra [6–8]. Sound and vibra-
tion were forbidden in the stop bands of infinite periodic struc-
tures. This is of interest for applications such as frequency filters,
noise absorbers, vibration absorbers, and high-precision mechani-
cal systems [9–13]. Therefore, periodic structures can be applicable
to noise and vibration control for their outstanding isolation effec-
tiveness in the stop band regions. The stop band regions can be tai-
lored to match the frequency bands that contained harmonics

frequencies of vibration excitations, attenuating noise and vibra-
tion in these frequency bands [14]. To decrease power flow and
power transmissibility of floating raft systems, periodic structures
were introduced to floating raft systems. A genetic algorithm (GA)
was utilized to tailor the stop band regions of periodic structures in
this study.

GAs are a kind of population-based search and optimization
methods that mimic the process of natural evaluation. They have
been successfully applied to various optimization problems which
are difficult to be solved by conventional methods [15]. GAs have
also been applied to a wide range of applications in noise and vibra-
tion control area, such as optimization of noise barriers [16], muf-
flers [17–19], supporting structures [20], and acoustical sandwich
panels [21]. GAs have noticeable advantages of handling optimiza-
tion problems which exist large numbers of parameters, multiple
criteria, and parameters in discrete data series. Moreover, GAs are
especially capable for optimization problems with many local opti-
mal, which are unreliable for direct optimummethods (i.e. steepest
ascent) [22]. The advantages of GAs are especially capable for solv-
ing the optimization problem in this study. Therefore, a GA was uti-
lized in the design approach for periodic structures.

2. Theory

As shown in Fig. 1, a floating raft system consisted of five sub-
structures: two identical machines (substructure 1), eight identical
isolators (substructure 2), an intermediate raft (substructure 3),
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four identical periodic structures (substructure 4), and a simply
supported flexible floor (structure 5) were considered in this study.

2.1. Model of the periodic structures

It is assumed that each periodic structure in the floating raft
consisted of N1 unit cells. Each unit cell consisted of N2 layers.
The one-dimensional (1-D) model of a unit cell is shown in
Fig. 2. The transfer matrix method was used to calculate the band
gaps and wave transmission characteristics of 1-D periodic struc-
ture models because of its simplicity and convenience [23].

The governing equation for the longitudinal wave propagated in
the Z direction (as shown in Fig. 2) of the lth layer of a unit cell can
be given as

@2ulðz; tÞ
@2t

¼ El

ql

@2ulðz; tÞ
@2z

; ð1Þ

where ul denotes the displacement of the lth layer in a unit cell, ql

and El denote the density and Young’s modulus of the material of
the lth layer, respectively. The solution of Eq. (1) can be written
as a superposition of forward and backward travelling waves with
a harmonic time dependence
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where j denotes the imaginary unit; w denotes the angular fre-

quency; AðlÞ
þ and AðlÞ

þ denote amplitudes of the forward and backward

travelling waves, respectively; kðlÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
denotes the wave

number of the longitudinal wave in the lth layer of a unit cell.
The stress can be given as
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The transfer mobility model of the lth layer of a unit cell can be
given as
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where Al and ll denotes the cross-sectional area and the thickness of
the lth layer.

The transfer mobility matrix between two connected unit cells
can be given as
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; ð6Þ

TMcell ¼
YN1
l¼1

TMlayerðlÞ: ð7Þ

The transfer matrix of the periodic structure can be given as

TMps ¼ ðTMcellÞN2: ð8Þ
The relationship between displacements and stress of two adja-

cent unit cells can be given as
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where k ¼ el ¼ eaþbj denotes the propagation constant. Combining
Eqs. (6) and (9), free wave propagated in the periodic structure
can be described by the eigenvalue problem
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where k1 ¼ el1 ¼ ea1þb1 j and k2 ¼ el2 ¼ ea2þb2 j are eigenvalues of the
transfer mobility matrix of a unit cell in the periodic structure. The
real parts a1 and a2 describe the exponential decay rate of the lon-
gitudinal waves, whereas the imaginary parts b1 and b2 describe the
phase transfer of the longitudinal waves through each unit cell [6].
If a ¼ 0, the free waves propagate without attenuation, and the cor-
responding frequency bands are pass bands. If a–0, the free waves
propagate with attenuation, and the corresponding frequency
bands are stop bands.

2.2. Model of the floating raft system

The transfer matrix models of the five substructures can be
given as
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where Vt
i and Ft

i denote the velocity and force vectors at connection

points on the top interface of the ith substructure, respectively; Vb
i

and Fb
i denote the velocity and force vectors at connection points on

the bottom interface of the ith substructure, respectively; Mi

Fig. 1. A schematic diagram of the floating raft system.

Fig. 2. A schematic diagram of a unit cell in a periodic structure.
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