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In LMS algorithm-based feedback estimation, the value of the adaptation step size chosen imposes estab-
lishes a compromise between the speed at which the algorithm converges to the feedback-path estimate
and the misadjustment between the true and estimated feedback paths at steady state. The combined
LMS (CLMS) scheme overcomes this issue, but itself suffers from a sluggish adaptation of the mixture
parameter during periods of a rapidly-varying or a stationary feedback path, leading to a degradation
in the performance of the feedback canceller. In this work, we propose an acoustic feedback canceller
with an improved affine combination of two different-step-size LMS filters, for a bias-less estimation
of the acoustic feedback. The new filter-combiner parameter controls the filter combination and ensures
at least a minimum adaptation of the mixture parameter for a stationary as well as a varying acoustic
environment. We analyse the proposed algorithm for feedback reduction and prove that it performs as
well as the element filters or even better in some situations, as compared to the CLMS algorithm. A
detailed behaviour analysis of the proposed algorithm is also presented for scenarios of a stationary as
well as a time-varying acoustic environment of the user. Simulation results verify the validity of the
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derived expressions.
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1. Introduction

The popularity of the least mean square (LMS) algorithm is
obvious from its wide usage in different applications due to its sim-
plicity, robustness, ease of implementation and tracking capability.
The control-mechanism in the LMS algorithm is governed by the
step size, which controls the convergence of the algorithm. Infact,
the value chosen for the step size imposes a trade-off between the
convergence speed of the algorithm and the steady-state perfor-
mance [1]. The misadjustment of the LMS algorithm, defined as
the ratio of the excess mean square error (EMSE) and the minimum
mean square error (MMSE), varies in direct proportion to the adap-
tation step parameter [1]. The robustness of the LMS algorithm and
a low error at steady state are guaranteed for a small value of the
adaptation step. However, the cost incurred for the aforemen-
tioned benefits is a slow convergence, due to an increase in the
time constant of the learning rate, and leading to a reduction in
the statistical efficiency of the algorithm [1]. The design compro-
mise that exists for the LMS algorithm, with regard to the step size,
also exists for the other adaptive algorithms.
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In the recent past, several schemes have been proposed that
attempt to overcome this compromise, viz., the least mean fourth
(LMF) algorithm [2], algorithms that facilitate the variation of the
step size [3] and the algorithms with step size adaptation [4,5].
Each of the aforementioned schemes come with their own set of
disadvantages or complexities such as a more rigid upper limit
on the value of the step size, susceptibility to the presence of noise
and introduction of new parameters that need a priori initializa-
tion. A simpler method to circumvent the compromise between
the algorithm convergence and its steady-state error compromise
is to combine the adaptive filter outputs optimally such that the
equivalent output is improved in quality, in that it allows for a fas-
ter convergence of the algorithm towards the estimate of the feed-
back path while at the same time incurring a reduced
misadjustment [6,7].

In [6,7], a combined LMS (CLMS) scheme is described in which
two LMS filters of different step sizes are combined together to
eliminate the steady-state error and convergence speed dilemma.
The output of the equivalent CLMS filter is a convex combination
of the outputs of the element filters of the combination. The mix-
ture parameter, used for establishing this affine combination by
adjusting the filter-combiner parameter, is updated non-linearly.
However, the adaptation process of the mixture parameter
becomes very sluggish when the filter-combiner parameter is too
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near to its endpoints, leading to a degradation in the performance
of the equivalent filter.

In this paper, we propose an improved CLMS (ICLMS)
algorithm-based acoustic feedback canceller using linear predic-
tion and probe-based adaptation for hearing aids, to improve
upon the performance of the CLMS algorithm. The issue of stagna-
tion in the update of the mixture parameter in the CLMS algo-
rithm is remedied by introducing a new filter-combiner
parameter, which prevents the stopping of the mixture parameter
adaptation at limit values of the filter-combiner parameter. Also,
the said feedback canceller design, with linear prediction and
probe noise, facilitates the attenuation of the low as well as the
high-frequency bias in the estimate of the acoustic feedback path
by circumventing the problem of signal correlations within the
closed loop. A detailed mathematical analysis is performed to
prove the complete universality of the proposed algorithm at
steady state, as compared to the CLMS algorithm. Further, we
extensively study the behaviour of the proposed algorithm in
the mean-square sense for situations of a stationary as well as
a time-varying feedback path to derive conclusions on the
improved performance of the equivalent filter as compared to
that of the element filters of the proposed combination as well
as the CLMS algorithm.

The following notation is adopted throughout the paper; [.]” for
the transpose operation, Tr(.) for the trace operation, sgm(.) for the
sigmoid function, min (.) for minimum of the values under consid-
eration, ||.|| for the norm of a vector, E[] for the expectation opera-
tion, k for discrete-time index, z for discrete-time delay operator
such that z-1g(k) = g(k — 1), bold-faced upper-case letters for the
matrices and bold-faced lower-case letters for the column vectors.
A discrete-time filter F(z) of length L is represented as a polynomial
interms of z7'as F(z) = fo +f1z7' +... +f,_, z*1 or by its coeffi-
cient vector f = [fy,f1,....f._1)". The signal g(k) is filtered by F(z)
as F(z)g(k) = " (k)g(k), with g(k) = [g(k),g(k—1),...,.gk —L+1)]".

A. Anand et al. / Applied Acoustics 129 (2018) 417-426

2. Brief system description

2.1. Adaptive feedback canceller with linear prediction and probe-
based estimation

In this section, we summarize the adaptive feedback canceller
with linear prediction and probe-based estimation (see Fig. 1),
the idea of which was originally proposed in [8]. In place of the
single-adaptive-filter configuration [8,9] of the aforementioned
feedback canceller, an affine combination of LMS filters is used
for more efficient feedback cancellation. Hearing-aid user’s acous-
tic surroundings are depicted via a feedback route between the
loudspeaker and the microphone using an FIR filter M(z) of length
L, and a coefficient vector m(k) = [mg, my,..., mLm,l]T. For adap-
tively estimating the user’s surroundings M(z), an FIR filter M(z)
of length L; and a coefficient vector m(k) = [mo,ml,.‘.,mlmqf
is used. Assuming that the incoming signal x(k) is a wide sense sta-
tionary process, we can express the output of the microphone as

y(k) =x(k) + f(k), (1)
where

f(k) = M(z)uy (k) (2)
is the signal which is fed back and

up(k) = u(k) + p(k) 3)

is the loudspeaker output signal, u(k) is the input signal to the loud-
speaker and p(k) is the probe noise signal, with the respective vec-
tor definitions being u, (k) = [uy(k), up(k—1),...,up(k — Ly + 1)}T,
u(k) = [u(k),u(k - 1),...,u(k — Ly, + 1)]" and p(k) = [p(k),p(k — 1),
...,p(k—Lg +1)]". The loudspeaker input u(k) = Qoyn_np(K) + Gy (k)
is expressed in vector form as

l.l(k) = qsyn_hp(k) + qlp(k)v (4)
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Fig. 1. ICLMS algorithm-based feedback canceller with linear prediction and probe-based adaptation.



Download English Version:

https://daneshyari.com/en/article/5010775

Download Persian Version:

https://daneshyari.com/article/5010775

Daneshyari.com


https://daneshyari.com/en/article/5010775
https://daneshyari.com/article/5010775
https://daneshyari.com

