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The widely studied subspace and linear filtering methods for noise reduction require the noise correlation
matrix to be invertible. In certain application scenarios, however, this matrix is either rank deficient or
very ill conditioned, so this requirement cannot be fulfilled. In this paper, we investigate possible solu-
tions to this important problem based on subspace techniques for single-channel time-domain noise
reduction. The eigenvalue decomposition is applied to both the speech and noise correlation matrices
to separate the null and nonnull subspaces. Then, a set of optimal and suboptimal filters are derived from
the nullspace of the noise signal. Through simulations, we observe that the proposed filters are able to
significantly reduce noise without introducing much distortion to the desired signal. In comparison with
the conventional Wiener approach, the developed filters perform significantly better in improving both
the signal-to-noise ratio (SNR) and the perceptual evaluation of speech quality (PESQ) score when the
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1. Introduction

Noise reduction, which is often also referred to as speech
enhancement, is a problem of recovering a clean speech signal of
interest from its microphone observations corrupted by additive
noise [1-3]. The goal of noise reduction may vary from one appli-
cation to another but, generally, it is to improve either the percep-
tual quality or the intelligibility or both of the noisy speech signal.
This has long been a challenge in many important real-world appli-
cations, such as mobile speech communication, hearing aids,
robotics, audio conferencing, and robust speech recognition, to
name a few. Extensive work has been done to address this problem
in the literature [1-7] and many different methods have been
developed, including optimal filtering [8,9], spectral subtraction
type of techniques [6,10-15], statistical approach [16-20], sub-
space methods [21-28], deep neural networks (DNNs) [29-32],
and multichannel filtering [5,3,33].
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Every of the aforementioned methods has its own pros and
cons. For example, the optimal filtering and subspace methods
work in the time domain. They require the estimation of the noise
correlation matrix which has to be well conditioned so that its
inverse can be computed reliably. Furthermore, these methods
are relatively expensive in computation as matrix inversion is
involved. In comparison, spectral subtraction type of techniques
are computationally very efficient thanks to the use of the fast
Fourier transform (FFT). However, speech distortion with this
method is large, which can only be controlled by sacrificing the
amount of noise reduction. The statistical approach generally
assumes some a priori knowledge about the speech and noise dis-
tributions or even the knowledge of the joint probability distribu-
tion of the clean speech and noise signals, so that the conditional
expected value of the clean speech (or its spectrum) can be evalu-
ated given the noisy signal. If the assumed distribution does not
model well the noise in real applications, which happens often,
the method may suffer from dramatic performance degradation.
Unlike the statistical method, the DNNs based approach does not
assume any a priori knowledge about the statistics and distribu-
tions of the speech and noise signals; it learns all the needed infor-
mation from the training data. If the signal and noise
characteristics in real applications are similar to those in the train-
ing set, this method may work well but, otherwise, its performance


http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2017.05.010&domain=pdf
http://dx.doi.org/10.1016/j.apacoust.2017.05.010
mailto:nnpan@mail.nwpu.edu.cn
mailto:benesty@emt.inrs.ca
mailto:jingdongchen@ieee.org
http://dx.doi.org/10.1016/j.apacoust.2017.05.010
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust

N. Pan et al./Applied Acoustics 126 (2017) 26-35 27

can be problematic. Nevertheless, the aforementioned methods are
successful to a certain degree, but none of those can claim victory
in dealing with the complicated noise reduction problem. Further
effort in this area is indispensable.

This paper deals with the problem of single-channel noise
reduction in the time domain. We focus on the scenario where
the noise correlation matrix is rank deficient. This happens often
in many applications where there is narrowband or harmonic
interference or transit and bandlimited noise (such as door slam-
ming, keyboard typing, etc). Unlike white and colored noises that
have been intensively studied in the literature, there is not much
work so far to address the noise reduction problem with a rank-
deficient noise correlation matrix. The approach we take here is
based on the principles of both subspace decomposition and opti-
mal filtering. First, the eigenvalue decomposition is applied to the
desired speech and noise correlation matrices. The nullspace
(formed from the eigenvectors corresponding to the zero eigenval-
ues) of the noise correlation matrix is then used to design a set of
optimal linear noise reduction filters. Using the entire nullspace of
the noise signal, we can design a maximum signal-to-noise ratio
(SNR) filter, which gives a high output SNR but with large speech
distortion. Manipulating the dimension of this nullspace leads to
a set of tradeoff filters, which can make a compromise between
the output SNR and the amount of speech distortion for better per-
ceptual speech quality.

The rest of this paper is organized as follows. In Section 2, we
present the formulation of the noise reduction problem and some
basic background information about the eigenvalue decomposition
in the context of noise reduction. We then discuss how to design
different filters including the Wiener, maximum SNR, and tradeoff
filters in Section 3. Simulations in harmonic noise, keyboard typing
noise, and mixture of these noises with white Gaussian noise are
presented in Section 4 to demonstrate the properties of the devel-
oped filters. Finally, some conclusions are given in Section 5.

2. Noise reduction problem

The problem considered in this paper is one of recovering a
clean speech signal of interest from its noisy observation (sensor
signal) [8,3]:

y(k) = x(k) + v(k), (1)

where x(k) is the zero-mean desired speech signal, k is the discrete-
time index, v(k) is the unwanted zero-mean additive noise, which
can be narrowband but is assumed to be uncorrelated with x(k).
With the signal model in (1), we define the input SNR as
2
iSNR 2 % 2)
v
where 02 £ E[x*(k)] and % £ E[22(k)] are the variances of x(k) and
v(k), respectively.
The model given in (1) can be put into a vector form by consid-
ering the L most recent successive time samples of the noisy signal,
ie,

y(k) = x(k) +v(k), 3)
where
y(k) = [y(k) y(k-1) yk-L+1)]" (4)

is a vector of length L, the superscript T denotes transpose of a vec-
tor or a matrix, and x(k) and v(k) are defined in a similar way to y(k)
in (4). Since x(k) and v(k) are uncorrelated by assumption, the cor-
relation matrix (of size L x L) of the noisy signal can be written as

Ry 2 E[y(k)y" (k)] = R« + Ry, (5)

where E['] denotes mathematical expectation, and Ry £ E[x(k)X" (k)]

and Ry £ E[v(k)v' (k)] are the correlation matrices of x(k) and v(k),

respectively.

In the context of noise reduction, the desired signal correlation
matrix, Ry, is generally not full rank. Without loss of generality, we
assume in this paper that the rank of Ry is equal to P < L. In the lit-
erature, the noise correlation matrix, Ry, is generally assumed to be
full rank and well conditioned. However, in many applications, this
matrix can be rank deficient. Here, we deal with this particular
case. Let us assume that the rank of Ry is equal to Q < L. Then,
the objective of noise reduction (or speech enhancement) is to esti-
mate the desired signal sample, x(k), from the observation signal
vector, y(k). It should be noticed that neither the joint diagonaliza-
tion [22,25] nor the prewhitening approach can be applied to this
problem [34] since they require the noise correlation matrix to be
full rank.

Using the well-known eigenvalue decomposition [35], the noise
correlation matrix can be diagonalized as

UERVUV = Av, (6)
where
Uv = [uv‘l uv,2 e uv‘L] (7)

is an orthogonal matrix, i.e., UTU, = UyU! =I;, with I; being the
L x L identity matrix, and

Av = diag()~v.1 s ;Lv.2~, ey )~V‘L) (8)

is a diagonal matrix. The orthonormal vectors uyq,uy>, ..., Uy are
the eigenvectors corresponding, respectively, to the eigenvalues
Y S T of the matrix Ry, where
;Lv.l = ;LV.Z = = Av.Q > ;vaQH = )vv.Q+2 ==yl = 0.

In the same way, the desired speech correlation matrix can be
diagonalized as

ULR Uy = Ay, 9)

where the orthogonal and diagonal matrices Uy and Ay are defined
in a similar way to U, and Ay, respectively, with
Ax1 = Ax2 = 2 Axp > Axpi1 = Axpr2 = = dxL = 0. The above
two decompositions will be used in the rest of this paper for the
purpose of deriving new optimal linear filters.

3. Filter design
3.1. Linear filter model

The most straightforward and practical way to perform noise
reduction in the time domain is to apply a linear filter to the obser-
vation signal vector, y(k), i.e.,

z(k) = h'y (k)
= h'[x(k) + v(k)] (10)
= Xga(k) + v (k),
where z(k) is the estimate of x(k),
h=(h h - k) (11)
is a real-valued linear filter of length L,
Xia (k) 2 h'x(k) (12)
is the filtered desired signal, and
Vi (k) 2 v (k) (13)

is the residual noise.
From (10), we find that the output SNR is
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