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a b s t r a c t

Multiple wave modes often exist in the ultrasonic guided waves simultaneously, and these modes are
dispersive, so the guided wave signals are very complex, even for the relatively simple situation of a
narrowband excitation. The guided wave signals are even more difficult to analyze for broadband
excitations. Time-frequency representations are appropriate for the analysis of the guided wave signals
considering their non-stationary and transient nature. As a post-processing tool, the squeezed wavelet
transform is studied for broadband Lamb wave mode identification in this work. The influence of the
parameters of the Gabor mother wavelet on the performance of the transform is analyzed in details. It
is found that the product of the r parameter of the used Gauss function and the center frequency x0

of the wavelet decides the overall time and frequency resolutions, so a proper selection of the value of
this product rx0 is crucial for the squeezed wavelet transform. The squeezed wavelet transform is first
applied to the analysis of a synthesized signal for verification. Then it’s applied for mode identification of
a simulated broadband Lamb wave signal. By traversing the value of rx0, a roughly optimum analysis
performance is achieved for the squeezed wavelet transform for the case of rx0 ¼ 11, where the modes
are well separated and the interferences between the modes are minimal. It’s proved that as an alterna-
tive tool, the squeezed wavelet transform could be used for the analysis of a broadband Lamb wave sig-
nal. An additional benefit of this transform is that it permits reconstruction of the original signal or its
components, which is not possible for the reassigned scalogram.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasonic waves propagating along the extension direction of
bounded elastic media like the plate and the pipe are called the
guided waves. Accordingly the structures they propagate in are
waveguides. Guided waves are increasingly used in the inspection
of various plate-like and pipe-like critical structures in different
fields because they can be used to check the whole line along the
propagation direction in the structure from one single point, thus
reducing the time consumption unavoidable in the traditional bulk
wave-based point-by-point ultrasonic inspection.

Despite the advantages, multiple modes often exist in the
guided waves, and these modes are dispersive in the sense that
the propagating velocities of the wave modes are functions of the
frequency. Because of this dispersion phenomenon, the guided
waves are more complex than the bulk waves, speaking of their
propagations and interactions with the defects. Even when one

approximately pure mode is generated with a narrowband excita-
tion, the features of the guided waves might be mixed together in
the time domain, thus making the interpretation of the received
guided wave signal difficult. If a broadband excitation is applied,
the complexity of the signal is even higher. This situation demands
an effective analyzing tool for mode identification from the guided
wave signals.

Guided wave signals are typical transient and non-stationary
signals with time-varying frequency components. The common
tool for the analysis of the non-stationary signals is the time-
frequency representations (TFRs). Unlike the original un-
processed pure time domain description or the pure frequency
domain description provided by the Fourier transform, the TFRs
map the signal as a 2D function of both time and frequency. A
by-product of the TFR is just what we’re most interested in, the
evolution of the frequencies of the components contained in the
signal with time.

With the TFRs at our disposal and taking into account the
distance of propagation of the guided waves, we can convert the
theoretical group velocity dispersion curves of the guided waves
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from the frequency-velocity plane to the time-frequency plane.
With this method, we can directly tell what modes are present in
the received signal, so it helps greatly with the interpretation of
the guided wave signals. This process was first seen in the work
of Prosser et al. [1].

There’re mainly two types of TFRs, i.e. the linear TFRs and the
bilinear TFRs. In the linear TFRs the signal is projected to a group
of time-frequency atoms [2], and the results of the TFRs are the
weights of projection on these atoms. The earliest linear TFR is
the short-time Fourier transform (STFT), a localized version of
the Fourier transform. The STFT and the derived spectrogram are
relatively easy to comprehend and are used widely. One problem
of this TFR is that with the restriction imposed by the uncertainty
principle, one can’t obtain arbitrarily high time and frequency res-
olutions simultaneously. Another problem is that its time and fre-
quency resolutions are fixed, once the window function is selected.

Another popular linear TFR is the continuous wavelet transform
(WT), which is in fact a time-scale transform. Roughly speaking,
the scale parameter is the reciprocal of the frequency. The time-
scale atoms of the WT are generated from a mother wavelet, and
the atoms form a time-scale dictionary with varying time/translation
and scale parameters. At a low frequency (high scale), a longer time
window (which means a narrower frequency window) is used, so
the WT has lower time resolution and higher frequency resolution.
At a high frequency (low scale), a shorter time window (which
means a broader frequency window) is used, so the WT has higher
time resolution and lower frequency resolution. The automatic
adjustment of the resolutions is the main advantage of the WT.
As a linear TFR, the WT is also limited by the uncertainty principle,
so we can’t achieve arbitrarily high time and frequency resolutions
simultaneously.

Wavelets were already used in the analysis of ultrasonic guided
wave signals. The Mexican Hat wavelet is a real wavelet, and it was
used to measure the group velocity of the Lamb waves, so as to
obtain the corrosion thickness in the plate [3]. The Mexican Hat
wavelet was also used to analyze the signals generated by EMATs
to identify the guided wave modes, for the tomography of artificial
defects in the plate [4]. Besides the real wavelets, the complex
Morlet/Gabor wavelets are often used. The Morlet wavelet was
applied for the transient wave analysis in the dispersive media
[5], the study of the interactions of the Lamb waves with circum-
ferential notch in an aluminum alloyed pipeline [6], the research
on the interactions of the Lamb waves with hidden corrosion
defects in the aircraft aluminum structure [7], and the analysis of
the multi-mode guided wave signals in the multi-wire cables [8].
Liu used the Gabor wavelet to analyze the signals of the circumfer-
ential guided waves to detect axial cracking in the pipeline [9]. Lee
used the Gabor wavelet for the analysis of the signals of the guided
waves propagating in the rock bolts [10].

Different from the linear TFRs, the bilinear TFRs directly corre-
spond to the energy distributions, i.e. they map the energy of the
signal as a function of time and frequency. The most important
bilinear TFR is the Wigner-Ville distribution (WVD). The WVD
has perfect concentration for the single component linear chirp sig-
nal, while because it has the form of a product followed by integra-
tion, cross terms emerge for the analysis of multi-component
signals with the WVD. To lower the influences of these cross terms,
the complex analytic signal corresponding to the original real sig-
nal is generally used in the computation of the WVD, and smooth-
ing is introduced as in the pseudo WVD (PWVD) and the smoothed
PWVD (SPWVD), although the smoothing is obtained at the price of
lower time-frequency resolutions. The PWVD was used in the dis-
persion analysis of the Lamb waves propagating in the graphite/
epoxy plates [1,11].

With the limitation imposed by the uncertainty principle, the
linear TFRs have constrained time-frequency resolutions. While

the bilinear TFRs, represented by the WVD, have interferences
because of the cross terms. To improve the readability of these
TFRs, Auger ‘rediscovered’ the reassigned time-frequency and
time-scale representations [12]. With these reassigned versions
of the original TFRs, better time-frequency concentrations are
achieved. Niethammer used the reassigned spectrogram to obtain
the dispersion curves of laser-generated multiple Lamb wave
modes in the aluminum plate [13,14]. The reassigned spectrogram
was later used in other applications like locating the defects [15].

Besides the normal TFRs, another tool or algorithm for non-
stationary and nonlinear signal analysis is the empirical mode
decomposition (EMD) in time domain combined with Hilbert
transform (HT). The EMD method is used to decompose a signal
into intrinsic mode functions (IMFs). Then HT is applied to the IMFs
to obtain instantaneous frequency data. During the recent years,
the EMD and HT method is increasingly used in mode recognition
of Lamb waves. Zhang applied the method to analyse both directly
arriving and boundary reflected Lamb wave modes of opposite
types (S0 and A0) [16]. The EMD and HT method was also used
to extract arrival times of Lamb waves for imaging applications
[17]. These work only used narrow-banded excitations, so we will
not explore further the EMD and HT method here.

In this work, an alternative wavelet post-processing technique
called squeezing, proposed by Daubechies et al. [18,19], is studied
for the analysis of multimode Lamb wave signal. With firstly a
review of the common TFRs and the reassignment concept, the
selection of the parameters of the mother wavelet is investigated,
and then the squeezing theory is introduced. The squeezed wavelet
transform is applied first to a synthesized signal, then to the sim-
ulated broadband Lamb wave signal. The parameters of the mother
wavelet are traversed to obtain a roughly optimum performance.
Although the squeezed wavelet transform provides no better per-
formance for the analysis of broadband Lamb wave signal than
the reassigned scalogram, it proves to be an alternative tool and
has the additional advantage of permitting reconstruction of the
original signal or its components, which is not possible for the
reassigned TFRs.

2. Brief review of the time-frequency representations and the
reassigned linear representations

2.1. The time-frequency representations

The basic tool for the frequency domain analysis of a signal f ðtÞ
is the Fourier transform (FT),

FðxÞ ¼
Z þ1

�1
f ðtÞe�jxt dt ð1Þ

in which x is the angular frequency in rad/s.
The inverse Fourier transform, or the reconstruction formula

from the known Fourier transform coefficients is,

f ðtÞ ¼ 1
2p

Z þ1

�1
FðxÞejxt dx ð2Þ

The time information is completely lost in the Fourier transform
(1), and the frequency information is absent from the original
time-domain representation as in (2). The Fourier transform is only
satisfactory for the representation of stationary signals whose fre-
quency contents don’t change with time. While in reality we’re
more often confronted with non-stationary signals with time-
evolving frequency contents. One example is the recorded music
signal, and all the rhythms, beautiful or not, rely on the changing
frequency contents. The guided wave signal that we’re interested
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