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a b s t r a c t 

We investigate the nonlinear parity-time (PT) symmetric coupler from a dynamical per- 

spective. As opposed to linear PT-coupler where the PT threshold dictates the evolution- 

ary characteristics of optical power in the two waveguides, in a nonlinear coupler, the PT 

threshold governs the existence of stationary points. We have found that the stability of 

the ground state undergoes a phase transition when the gain/loss coefficient is increased 

from zero to beyond the PT threshold. Moreover, we found that instabilities in initial con- 

ditions can lead to aperiodic oscillations as well as exponential growth and decay of optical 

power. At the PT threshold, we observed the existence of a stable attractor under the influ- 

ence of fluctuating gain/loss coefficient. Phase plane analysis has shown us the presence of 

a toroidal chaotic attractor. The chaotic dynamics can be controlled by a judicious choice 

of the waveguide parameters. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Bender and Boettcher’s pioneering work [1] on a class of non-Hermitian Hamiltonian paved the way for new de- 

velopments in the foundational studies of quantum mechanics [2–6] . They showed that such Hamiltonians possess a 

real eigenspectra as long it respects the criteria of PT (Parity and Time Reversal) symmetry. In general, the Hamiltonian 

H = − 1 
2 

d 2 

d x 2 
+ V (x ) is said to be PT symmetric if the potential function satisfy V (x ) = V ∗( −x ) . Such Hamiltonians possess 

a real eigen-spectrum. But if the imaginary component of V ( x ) exceeds a certain threshold, the eigenspectrum ceases to be 

real resulting in spontaneous symmetry breaking [7] . 

In recent times, optics has proved to be a fertile ground for the investigation of PT symmetry both in linear as well as 

nonlinear systems. It was Ruschhaupt, Delgado and Muga [8] , who first proposed the idea in 2005 in the context of planar 

slab waveguides. Moreover, the isomorphism of the paraxial equation of diffraction [8] with Schrodinger’s wave equation 

presented a feasible way to explore PT symmetry in the field of optics provided one can appropriately synthesize the refrac- 

tive index profile of the system to satisfy, n (x ) = n ∗( −x ) . This analogy enabled researchers to observe the first experimental 

evidence of PT symmetry in optical waveguide structures [7] . Since then there has been numerous works on PT symmetry 

in optics, both in experimental as well as theoretical settings. PT Symmetry is studied in various contexts such as: Bragg 

solitons in nonlinear PT-symmetric periodic potential [9] , continuous and discrete Schrodinger systems with PT-symmetric 

nonlinearities [10–12] , bright and dark solitons and existence of optical rogue waves [13–19] , modulation instability in non- 

linear PT-symmetric structures [20,21] , optical oligomers [22–29] , optical mesh lattices [30–33] , unidirectional invisibility 
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[34] , non-reciprocity and power oscillations [35,36] , field propagation in linear and nonlinear stochastic PT coupler [37] , 

optical mode conversion and transmission on photonic circuits [38] and so on. 

In coupled waveguide systems, the PT phase transition is characterized by exponential growth and decay of optical power. 

Such systems have been studied in great detail [22] . The equations governing such systems can be analytically solved if the 

system is devoid of any form of nonlinearity. But in the presence of nonlinearity, analytical solution is not possible and 

prior assumptions are required. For instance, in Ref. [22] , the system was studied taking stationary waves into consideration, 

whereas in Ref. [23] , Stokes’ parameters were used to study the conserved quantities. In the same line of research, this work 

aims to study the nonlinear PT symmetric dimer from a dynamical point of view. We have considered a waveguide coupler 

as our ‘dimer’ system. A thorough stability analysis of the fixed or stationary points in the system is carried out. This gives 

us a clearer and detailed interpretation of the dynamics subjected to different initial conditions. In our discussion, we will 

use the terms fixed points and stationary states interchangeably. 

The article is organized as follows. In Section II , the theoretical model is described briefly. Section III presents and dis- 

cusses the stability analysis of the ground state of the coupler below and above the PT threshold. It also discusses the non- 

zero stationary states of the configuration in the unbroken regime and at the phase transition point followed by conclusion 

in Section IV . 

2. The model 

The PT symmetric nonlinear coupler is a configuration consisting of two waveguides in close proximity so as to facilitate 

the transfer of optical power from one waveguide to the other via evanescent coupling. One waveguide can amplify the 

input optical signal and the other can attenuate the signal by the same proportion. The equations governing the dynamics 

of such a configuration are given by [23] : 

i 
d a 1 
dz 

= iγ a 1 + C a 2 + | a 1 | 2 a 1 
i 
d a 2 
dz 

= −iγ a 2 + C a 1 + | a 2 | 2 a 2 (1) 

Here, a 1 and a 2 are the field amplitudes and γ characterizes the gain/loss in the two channels and C is the coupling con- 

stant. Both waveguides portray Kerr nonlinearity of equal strength. 

In the absence of Kerr nonlinearity, the PT threshold is given by γth = C. But adding the nonlinearity changes the entire 

dynamics of the system. The reason is that once the system is modified with the inclusion of nonlinear terms, the initial 

conditions will play a major role in the dynamics of optical power evolution [28] . It must be noted here that the PT threshold 

of the linear coupler will be used as a reference point to study the stability analysis. 

3. Stability analysis and discussion 

We first consider the ground state of the coupler defined by: a 1 = a 2 = 0 . This set of initial conditions corresponds to un- 

excited waveguides. To ascertain the stability of the ground state, we expand the differential equations using the prescription 

a 1 = x 1 + i y 1 and a 2 = x 2 + i y 2 . Eq. (1) can then be re-written as follows: 

˙ x 1 = γ x 1 + C y 2 + 

(
x 2 1 + y 2 1 

)
y 1 (2a) 

˙ y 1 = γ y 1 − C x 2 −
(
x 2 1 + y 2 1 

)
x 1 (2b) 

˙ x 2 = −γ x 2 + C y 1 + 

(
x 2 2 + y 2 2 

)
y 2 (2c) 

˙ y 2 = −γ y 2 − C x 1 −
(
x 2 2 + y 2 2 

)
x 2 (2d) 

The linearization Jacobian is given by 

J = 

⎡ 

⎢ ⎣ 

γ + 2 x 1 y 1 x 2 1 + 3 y 2 1 0 C 

−
(
3 x 2 1 + y 2 1 

)
γ − 2 x 1 y 1 −C 0 

0 C −γ + 2 x 2 y 2 x 2 2 + 3 y 2 2 

−C 0 −(3 x 2 2 + y 2 2 ) −γ − 2 x 2 y 2 

⎤ 

⎥ ⎦ 

(3) 

The Jacobian eigenvalues are calculated to be λ = ±
√ 

γ 2 − C 2 . For γ < C , all eigenvalues of the Jacobian are purely imag- 

inary indicating that the ground state is a non-hyperbolic fixed point [39] . Linear stability analysis fails if the fixed point 

under consideration is non-hyperbolic [40] . In mathematical terms, if all the eigenvalues are purely imaginary, the fixed 

point is classified as non-hyperbolic. In such a case, numerical solution of the system, under a suitably chosen perturbation, 

reveals the exact nature of the fixed point. On the other hand, if one or some of the eigenvalues contain non-zero real part 

the fixed point is categorized as hyperbolic. In such cases, linear stability analysis is sufficient. Above the PT threshold, the 
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