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a b s t r a c t 

This paper is concerned with the stability in distribution of a delay stochastic popula- 

tion model with two competing preys ( X 1 and X 2 ) and one predator ( X 3 ). Under some 

assumptions we prove that there are three numbers γ 1 > γ 2 > γ 3 which have the 

following properties: if γ 1 < 1, then all the populations go to extinction almost surely 

(a.s.), i.e., lim t→ + ∞ 

X i (t) = 0 a.s., i = 1 , 2 , 3 ; If γi > 1 > γi +1 , i = 1 , 2 , then the distribu- 

tion of (X 1 (t) , . . . , X i (t)) T converges weakly to a unique ergodic invariant distribution and 

lim t→ + ∞ 

X j (t) = 0 a.s., j = i + 1 , . . . , 3 ; If γ 3 > 1, then the distribution of ( X 1 ( t ), X 2 ( t ), 

X 3 ( t )) 
T converges weakly to a unique ergodic invariant distribution a.s.. The influence of 

random perturbations on the stability are discussed and some numerical simulations are 

given to illustrate the main results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the natural world, it is a common phenomenon that a predator feeds on some competing preys, for example, Hyenas, 

Zebra and Connochaetes in Africa. On the other hand, time delays should be taken into account in biological models [1] . 

Therefore in the past few decades, delay population models with two competing preys and one predator have received 

great attention and have been studied extensively. Among various types of delay population models with two competing 

preys and one predator, we should specially mention the following Lotka–Volterra system, which has been widely studied 

in [2–6] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

d X 1 (t) = X 1 (t) 
[ 

b 1 − c 11 X 1 (t) − c 12 X 2 (t − τ12 ) − c 13 X 3 (t − τ13 ) 
] 

d t, 

d X 2 (t) = X 2 (t) 
[ 

b 2 − c 21 X 1 (t − τ21 ) − c 22 X 2 (t) − c 23 X 3 (t − τ23 ) 
] 

d t, 

d X 3 (t) = X 3 (t) 
[ 

− b 3 + c 31 X 1 (t − τ31 ) + c 32 X 2 (t − τ32 ) − c 33 X 3 (t ) 
] 

d t , 

with initial data 

X i (θ ) = ξi (θ ) , θ ∈ [ −τ̄ , 0] , τ̄ = max { τi j } , (1) 
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where X i ( t ) is the size of the prey i , i = 1 , 2 , and X 3 ( t ) is the size of the predator. b i is the growth rate of species i , i = 1 , 2 , b 3 
is the death rate of the predator. c ii is the intra-specific competition rate, i = 1 , 2 , 3 . c 12 and c 21 are the inter-specific compe- 

tition rates between species 1 and 2, c 13 and c 23 are the capture rates, c 31 and c 32 stand for the efficiency of food conversion. 

All coefficients mentioned above are positive constants. τ ij ≥ 0 represents the time delay. ξ (θ ) = (ξ1 (θ ) , ξ2 (θ ) , ξ3 (θ )) T ∈ U , 

U represents the space of all the continue functions from [ −τ̄ , 0] to R 3 + = { x = (x 1 , x 2 , x 3 ) ∈ R 3 | x i > 0 , i = 1 , 2 , 3 } . 
On the other hand, the natural growth of species in the real world is inevitably subject to environmental fluctuations [7] . 

It is therefore important to study the stochastic population models and reveal the effects of stochasticity on the dynamics of 

the models. There are several approaches to introduce the stochastic fluctuations into population models. Here we follow the 

approach adopted in [8–30] , i.e., we assume that the stochastic factors mainly affect the growth/death rates of the species, 

with 

b i → b i + βi 
˙ W i (t) , i = 1 , 2 , 3 , 

where { W (t) } t≥0 = { W 1 (t) , W 2 (t) , W 3 (t) } t≥0 is a three-dimensional Brownian motion defined on a complete probability 

space (�, F , {F} t≥0 , P) with a filtration {F} t≥0 satisfying the usual conditions, and β2 
i 

is the intensity of the noise, i = 1 , 2 , 3 . 

Thus we derive the following stochastic delay model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

d X 1 (t) = X 1 (t) 
[ 

b 1 − c 11 X 1 (t) − c 12 X 2 (t − τ12 ) − c 13 X 3 (t − τ13 ) 
] 

d t + β1 X 1 (t)d W 1 (t) , 

d X 2 (t) = X 2 (t) 
[ 

b 2 − c 21 X 1 (t − τ21 ) − c 22 X 2 (t) − c 23 X 3 (t − τ23 ) 
] 

d t + β2 X 2 (t)d W 2 (t) , 

d X 3 (t) = X 3 (t) 
[ 

− b 3 + c 31 X 1 (t − τ31 ) + c 32 X 2 (t − τ32 ) − c 33 X 3 (t) 
] 

d t + β3 X 3 (t)d W 3 (t) , 

(2) 

with initial value (1) . 

In the investigation of population model, an interesting question is to consider the stability of positive equilibrium state 

[1] . However, lots of stochastic population models (for example, model (2) ) do not have the traditional positive equilibrium 

state. Several researchers (see e.g., [8–16] ) have suggested that one can consider the stability in distribution of the solutions 

(SDS) of stochastic population models. As far as we are concerned, no results relative to the SDS of model (2) have been 

reported. One reason is that the classical approaches could not be used. 

One classical approach to investigate the SDS of stochastic population models is to solve the corresponding Fokker–

Planck equations explicitly (see, e.g. [8] ). However, this is almost impossible for stochastic population models with time 

delays. Another approach is the Markov semigroup theory, see, e.g., [9,10,27] . However, this approach requires some standard 

measure. The standard measure of the phase space of ordinary differential equations is the Lebesgue measure. But it is 

difficult to decide the standard measure of the phase space of delay differential equations (communicated with Professor 

Ryszard Rudnick). The third approach is the Lyapunov function method proposed in [31] which has been widely used in 

literatures, for example, by using this approach, Ji et al. [11,12] studied the SDS of predator-prey models perturbed by white 

noises; Mao [13] explored the SDS of a n -species Lotka–Volterra mutualism system with random perturbations; Jiang et al. 

[14] considered the SDS of a n -species stochastic Lotka–Volterra competitive model; Zou et al. [15] investigated the SDS 

of a predator-prey model perturbed by white noises; Zhao et al. [16] analyzed the SDS of a three-species stochastic Lotka–

Volterra competitive system in polluted environments. However, the Lyapunov function approach needs the Markov property 

of the solutions which the stochastic delay models do not own. The fourth approach is the basic theory of SDS for stochastic 

functional differential equations (see, e.g., Hu and Wang [32] ). However, this approach requires that the coefficients of the 

models must obey the linear growth condition, while most population systems do not obey. 

In this paper, we use an asymptotic approach [27] to analyze the SDS of model (2) . Under some assumptions we show 

that there are three numbers γ 1 > γ 2 > γ 3 which are represented by the coefficients of the model. We prove that: if γ 1 < 

1, then lim t→ + ∞ 

X i (t) = 0 almost surely (a.s.), i = 1 , 2 , 3 ; If γi > 1 > γi +1 , i = 1 , 2 , then the distribution of (X 1 (t) , . . . , X i (t)) T 

converges weakly to a unique ergodic invariant distribution (UEID) and lim t→ + ∞ 

X j (t) = 0 a.s., j = i + 1 , . . . , 3 ; If γ 3 > 1, 

then the distribution of ( X 1 ( t ), X 2 ( t ), X 3 ( t )) 
T converges weakly to a UEID a.s.. 

The organization of this paper is outlined as follows. In Section 2 , we give the main theorem and its proof. In Section 3 , 

we introduce some numerical simulations to illustrate the main results. In Section 4 , we discuss the theoretical results and 

their biological interpretations. 

2. Main results 

For the sake of simplification, we define some notations: 

a i = b i −
β2 

i 

2 

, i = 1 , 2 , a 3 = b 3 + 

β2 
3 

2 

, 

� = 

∣∣∣∣∣∣
c 11 b 1 β2 

1 / 2 

c 21 b 2 β2 
2 / 2 

−c 31 −b 3 β2 
3 / 2 

∣∣∣∣∣∣, C = 

∣∣∣∣∣ c 11 c 12 c 13 

c 21 c 22 c 23 

−c 31 −c 32 c 33 

∣∣∣∣∣, 
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