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a b s t r a c t 

Resonance orbits around a uniformly rotating asteroid are studied from the approach of 

periodic orbits in this work. Three periodic families (denoted as I, II, and III in the pa- 

per) are fundamental in organizing the resonance families. For the planar case: (1) Ge- 

nealogy and stability of Families I, II and the prograde resonance families are studied. For 

extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted 

from that of the two body-problem (2BP), indicating that it is inappropriate to treat the 

orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are 

also studied. Stability of this family may be destroyed by the secular resonance between 

the orbital ascending node’s precession and the asteroid’s rotation. For the spatial case: (1) 

Genealogy of the near circular three-dimensional periodic families are studied. The geneal- 

ogy may be broken apart by families of eccentric frozen orbits whose argument of perigee 

is “frozen” in space. (2) The joint effects between the secular resonance and the orbital 

resonances may cause instability to three-dimensional orbital motion with orbit inclina- 

tions close to the critical values. Applying the general methodology to a case study — the 

asteroid Eros and also considering higher order non-spherical terms, some extraordinary 

orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and 

the stable frozen orbits with argument of perigee librating around values different from 

0 °, 90 °, 180 °, 270 °. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

One approach to study the orbital dynamics close to a uniformly rotating irregular asteroid is through the periodic orbits 

in the asteroid’s body-fixed frame (BFF). There have been some papers on this problem [15–17,20,21,26,30–33,38,39] . These 

studies generally focus on computing specific periodic families and their stability properties, with little or no intention to 

study their inherent relations. Some previous papers [16,17] did notice the existence of inherent relationship between these 

families, but the relationship is not systematically investigated. Different from these works, in this contribution, we focus 

on the relationship (we use the terminology “genealogy”) between periodic families and how the genealogy changes with 

the perturbations. The method in this work — first compute periodic families in the 2BP and then continue them to the 

perturbed case — is traditional in celestial mechanics and is extensively used in dynamical systems such as the circular 

restricted three-body problem [10] . The method itself is not new, but is rarely adopted to treat orbital motions with non- 

spherical perturbations. Through this method, the main purpose of the current study is not only to find stable periodic orbits 
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in the presence of non-spherical perturbations, but also to provide answers to the following question: How do the genealogy 

and stability of periodic families of the 2BP change with non-spherical perturbations? Three families are fundamental in 

answering this question. Their members are circular orbits in the unperturbed 2BP and remain near-circular in the presence 

of perturbations. We denote them respectively as I, II, and III. Studies show: 

1. For the planar case, in the presence of non-spherical perturbations, Family I (II) breaks up into infinite pieces at the 1st 

order inner (outer) resonances. If the non-spherical terms are extremely large, genealogy of periodic families close to 

the asteroid is completely different from that of the 2BP, indicating that it is inappropriate anymore to describe these 

orbital motions as perturbed Keplerian orbits. On the other hand, genealogy of Family III is not affected by the 1st order 

resonances, but may also be broken apart by the secular resonances. 

2. In the absence of non-spherical perturbations, the three-dimensional (3D) resonance periodic orbits play the role of 

“bridges” connecting the bifurcation orbits of Family III with those of Family I (II). In the presence of non-spherical 

perturbations, this genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee 

is “frozen” in space. Moreover, the joint effects between the orbital resonances and the secular resonance destroy the 

stability of orbital motions with orbit inclinations close to the critical values. 

In this work, most of the studies are carried out in the 2nd order and 2nd degree (2OD) gravity, but at the end of the 

work, the asteroid Eros is taken as an example to show the effects of high-order non-spherical terms. Some extraordinary 

orbits are found, such as orbits with orbital plane co-rotating with the asteroid, and stable frozen orbits with their argument 

of perigee librating around values different from 0 °, 90 °, 180 °, 270 °. 

2. Equations of motion 

In the BFF of a uniformly rotating asteroid, the orbit of a small body follows ⎧ ⎪ ⎨ 

⎪ ⎩ 
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(1) 

where n a is the asteroid’s rotation speed. V is the minus of the asteroid’s potential. When expressed with spherical harmon- 

ics, it has the following form [18] 
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where C̄ lm 

, S̄ lm 

are normalized Stokes coefficients, and P̄ lm 

is normalized associated Legendre function. m a is the mass of the 

asteroid. φ is the latitude, and θ is the longitude of the massless particle in the BFF of the asteroid. Eq. (1) allows an integral 
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This integral has a same form as the Jacobi integral of the circular restricted 3-body problem, so we also call it Jacobi 

integral and C as the Jacobi constant. Assuming the asteroid as a particle, the radius of the synchronous orbit is 

r syn = 

(
Gm a T 

2 
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4 π2 

) 1 
3 

(4) 

where T a = 2 π/n a is the rotation period of the asteroid. Taking following units in our work 

[ L ] = r syn , [ M] = m a , [ T ] = 

√ 

[ L ] 3 /G [ M] (5) 

It’s easy to show that the rotation speed of the asteroid equals 1 when above units are used. The first order partial deriva- 

tives of V with respect to the coordinates which appears in Eq. (1) are given in the appendix, along with the second order 

partial derivatives which are necessary when computing the Monodromy matrix of periodic orbits. 

Different asteroids have different shapes and mass distributions, and thus have different gravity fields. Except for some 

special cases [22] , the dominant non-spherical terms are J 2 and J 22 (i.e., the 2OD gravity). It is difficult to get some common 

knowledge on diverse gravity fields, so we first carry out the study in the 2OD gravity and then discuss the effects of higher 

order non-spherical terms for specific asteroids. To separate the 2OD terms from the higher order terms in the gravity field, 

we didn’t use the more accurate but more sophisticated polyhedron model [36] . Nevertheless, the way to compute periodic 

families (see Section 3 ) also applies when the polyhedron model is used. To give physical interpretations of the J 2 , J 22 values 

used in our work, we use the tri-axial ellipsoidal shape model for the asteroid. Suppose the semi axes of the ellipsoid are 

a ≥ b ≥ c , we have [1] 
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