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1. Introduction

Many real-life phenomena can be ultimately described in terms of mutually interacting entities which can occasionally
give rise to collective behaviors [1,2]. The emerging patterns may play important functional roles, as it is for instance the
case for biochemical processes [3]| and ecological applications [4-6]. Synchrony is among the most striking example of self-
organized dynamics [7]. It is encountered in a wide gallery of natural systems, think to the beating of the heart [8] and the
firing of the firefly [9]. It also plays a role of paramount importance for the correct functioning of man-designed technology,
as e.g. in power grids [10,11].

Synchronization of self-sustained oscillations is a particularly rich field of investigation. Mathematically, self-sustained
oscillations correspond to stable limit cycles in the state space of an autonomous continuous-time dynamical system. Os-
cillators can be embedded in continuum space, being subject to diffusive couplings. The ensuing reaction-diffusion system
displays synchronous oscillations, which, under specific conditions, prove robust to external perturbations. Each oscillator
can alternatively occupy a node of a complex network [12-15], a generalization that opens up the perspective to tackle a
large plethora of problems that deal with a discrete and heterogeneous hosting support [15-17].
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For continuous reaction-diffusion systems near the supercritical Hopf bifurcation, one can obtain a simplified, normal
form description of the dynamics in terms of an associated Ginzburg-Landau equation (CGLE) [7,18,19]. This is a reduced
picture which provides an accurate representation of the original model, while allowing for analytical progress to be made.
From a more general perspective, it is also important to classify minimal, though effective descriptive frameworks that could
guide in the search for universal traits that happen to be shared by multispecies models, besides their intrinsic degree of
inherent specificity. Simplified schemes that exemplify an exact underlying dynamics can be effectively employed to shed
light on the onset of spatio-temporal chaos and propagation of nonlinear waves. Externally imposed non homogeneous per-
turbation can, for instance, break the synchrony of the oscillations as displayed by the original reaction-diffusion system,
or equivalently its CGLE analogue, so materializing in a colorful density patterns that sustain spatio-temporal propagation.
The formal link between continuous reaction diffusion-systems and the CGLE was established in the pioneering work by
Kuramoto [18], exploiting a multiple-scale perturbative analysis. More recently the analysis has been extended by Nakao
[20] to the relevant setting where the reaction-diffusion system is made to evolve on a symmetric, hence undirected, net-
work. As remarked in [21], directionality matters and can seed the emergence of non trivial collective dynamics which
cannot manifest when the scrutinized system is made to evolve on a symmetric discrete support. Motivated by this finding,
we considered in [22] the dynamics of a reaction-diffusion system defined on a directed graph which displays a stable fixed
point and obtained an effective description for the evolution mode triggered unstable, just above the threshold of criticality.
The analysis exploits a multiple time-scale analysis and eventually yields a Stuart-Landau for the amplitude of the unstable
mode, whose complex coefficients reflect the topology of the network, the factual drive to the instability.

In this paper we aim at following the similar strategy of [22] to derive an approximate equation for the evolution of a
reaction diffusion system on a directed (and balanced) graph, in the vicinity of a supercritical Hopf bifurcation. As a matter
of fact we will assume weak the strength of the coupling that links adjacent nodes. In doing so, we will generalize the
work of Nakao [20] to the interesting setting where asymmetry in the couplings needs to be accommodated for and, at the
same time, reformulate the classical work of Kuramoto [18], on a discrete spatial backing. To anticipate our findings, and
at variance with the analysis reported in [22], we will finally obtain a CGLE as a minimal description for the dynamics of
the self-sustained oscillators coupled on a complex and asymmetric graph. The obtained CGLE enables one to analytically
probe the stability of the synchronous uniform state, as displayed by the reaction-diffusion system. Specifically, it allows to
determine the parameters setting that instigates a symmetry breaking transition to non-uniform patterns. Numerical tests
made for the Brusselator model, here assumed as a reference model for its pedagogical interests, will confirm the adequacy
of the proposed approximate scheme.

2. Diffusive oscillators on networks

We will here consider a generic two dimensional reaction-diffusion system and label with x;(t) = (d)j,wj)T for j=
1,...,N the two-dimensional real vector of the concentrations. The index j refers to the node of the network to which
the selected components refer to. N stands for the size of the network, i.e. the total number of nodes. The only further
assumption that we shall make is the existence of self-sustained oscillations for the system under scrutiny and for this rea-
son we will point to x;(t) as to the oscillators’ variables. The dynamics of the system is hence described by the following
differential equation

N

X; =F(X;, ) + D> Ajxq (1)
P

where the two-dimensional nonlinear function F specifies the reaction terms: it depends on the local concentrations of the
species x; and on u which is a vector of arbitrary dimension that gather together the parameters of the model. The second
term represents the diffusive coupling: D = Kdiag(Dy, Dy, ) denotes the diagonal matrix of the diffusion coefficients. K is a
constant parameter that set the strength of the coupling. As we will make clear in the following the perturbative analysis
that we shall develop, hold for K< < 1. In Eq. (1), A is the Laplacian matrix whose elements read A;; = A;; — §;;k;. Here we
focus on directed networks, thus the adjacency matrix A is not symmetric. Using standard notations, A;; = 1 if a link exists
that goes from node i to node j. Otherwise, A;; = 0. k; is the number of outgoing edges from node i, §;; is the Kronecker’s
delta. We assume that system (1) admits a homogeneous equilibrium point that we here label x* = (¢*, ¥ *)T. This request
implies dealing with a balanced network, namely a network where the outgoing and incoming connectivities are equal.

We additionally require that x* undergoes a Hopf bifurcation for u = py. Accordingly, the Jacobian matrix associated to
system (1) has a pair of imaginary eigenvalues =+iw. Slightly above the supercritical Hopf bifurcation, x* becomes unsta-
ble, the reaction-diffusion system admits an time dependent homogeneous solution. This is the uniform state obtained by
replicating on each node of the network and in complete synchrony, the limit cycle displayed by the system in its a-spatial
limit (K = 0). The spatial coupling, sensitive to tiny non homogeneities, which configure as injected perturbation, can even-
tually destabilized the uniform synchronous equilibrium. When diffusion is small (K = €2 << 1), the method of multiple
timescales [18] constitutes a viable strategy to characterize the nonlinear evolution of the perturbation and hence elaborate
on the stability of the time-dependent uniform periodic solution.

To this end, inspired by the analysis carried out in [20], we introduce small inhomogeneous perturbations, §¢; and
3, to the uniform equilibrium point, namely (¢}, ¥;) = (¢*, ¥*) + (8¢;, 8¢;) for j=1,...,N. We then substitute this
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