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a b s t r a c t 

The quantification of anomalous diffusion is increasingly being recognised as an advanced 

modality of analysis for the evaluation of tissue microstructure in magnetic resonance 

imaging (MRI). One powerful framework to account for anomalous diffusion in biological 

and structurally heterogeneous tissues is the use of diffusion operators based on fractional 

calculus theory, which generalises the physical principles of standard diffusion in homo- 

geneous media. However, their non-locality makes analytical solutions often unavailable, 

limiting the applicability of these modelling and analysis techniques. In this paper, we de- 

rive compact analytical signal decays for practical MRI sequences in the anisotropic frac- 

tional Bloch–Torrey setting, as described by the space fractional Laplacian and importantly 

the time Caputo derivative. The attained solutions convey relevant characteristics of MRI 

in biological tissues not replicated by standard diffusion, including super-diffusive and sub- 

diffusive regimes in signal decay and the diffusion-driven incomplete refocusing of spins 

at the end of the sequence. These results may therefore have significant implications for 

advancing the current interpretation of MRI, and for the estimation of tissue properties 

based on exact solutions to underlying diffusive processes. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays, water-diffusion magnetic resonance imaging (MRI) has been consolidated as an unparalleled technology for 

the evaluation of pathological disarrangements in tissue microstructure in different organs and diseased conditions. In spite 

of their promising results in clinical applications, a limitation of conventional MRI diffusion metrics is that they are derived 

based on the assumptions of Gaussian diffusion. However, biological tissues are known to be structurally complex environ- 

ments, where many factors affect the decay of the diffusion signal. These include the dissimilar sizes of the intracellular 

and extracellular compartments involved in water exchange, the existence of different tissue types, highly inhomogeneous 

extracellular matrices and intricate microvasculature networks within the organs, or the presence of cellular membranes as 

well as fibre and laminar tissue structures that act as effective barriers hindering the diffusion of water molecules [1,2] . 

As a result, and in particular under large diffusion weighting gradients, the acquired diffusion signal deviates from the 

mono-exponential decay predicted by Gaussian diffusion in a phenomenon known as anomalous diffusion. Quantification 

of such an anomalous signal decay has shown higher sensitivity and to provide complementary information for detecting 
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pathological conditions to that encapsulated by standard diffusion metrics. Whereas the majority of studies to date have 

been conducted in the field of neuroscience (see [3] and references therein for a comprehensive review on the brain and 

spine), applications also include the assessment of myocardial heterogeneity in the heart [4] , liver fibrosis [5] and cartilage 

degradation [6] , to cite a few. 

In recent years, fractional calculus has arisen as a powerful and robust theoretical framework in order to account for the 

effects of anomalous diffusion in MRI [7–12] . The main advantage of such an approach is that insights can be derived from 

generalisations of the physical principles describing the magnetisation of water protons in MRI: the Bloch–Torrey equation 

[13] . This can have important implications in understanding the different contributions of tissue microstructure to anoma- 

lous diffusion [14] , compared to the fitting of experimental data to phenomenological signal decays such as bi-exponential 

[15] or stretched-exponential models [16] . However, an important drawback of the fractional setting is the complexity of its 

associated non-local operators for the derivation of exact solutions for the acquired signal decay. Whereas the purely space 

fractional setting imposes no real difficulties when using Fourier transforms [10,17] , the time fractional setting is much more 

complicated, and to derive an analytical solution to the full fractional time-space Bloch–Torrey equation still remains as an 

open challenge [10] . 

In this paper, we derive such an exact solution by exploiting the piecewise and polynomial nature of practical MRI pulse 

sequences. Here, we focus on the space fractional Laplacian and the time Caputo derivative given their suitability for the 

description of physical problems. The associated non-autonomous fractional differential equations are then solved using 

extended (Kilbas–Saigo) Mittag–Leffler and Lauricella functions. Through the connection of the latter with Gauss hypergeo- 

metric functions, we additionally derive compact analytical formulas for the acquired signal decay at the end of the pulse 

sequence. The attained solutions not only replicate the super-diffusive and sub-diffusive regimes reported in signal decay in 

biological tissues, but also the diffusion-driven residual phase shift linked to the incomplete refocusing of spins at the end 

of the encoding sequence. Our results may therefore have important implications for advancing the interpretation of MRI 

and the characterisation of tissue microstructure in healthy and diseased states, through the estimation of tissue properties 

based on exact solutions to the underlying diffusive processes. 

2. Theory 

In the traditional diffusion setting, the dynamics of the diffusion weighted signal S are described by the standard Bloch–

Torrey equation [13] : 

∂ t S = −iγ r · G (t) S + ∇ · D ∇S, (1) 

where i is the imaginary unit, r is the position vector, γ is the gyromagnetic ratio for protons, G ( t ) is the time-varying 

applied gradient, and D is a positive definite symmetric diffusion tensor. Analytical solutions for the signal decay can be 

obtained by assuming solutions of the form 

S(r , t) = S 0 A (t ) ϕ(r , t ) , ϕ(r , t ) = exp ( −i r · L (t) ) , L (t) = γ

∫ t 

0 

G (s ) ds, (2) 

with A (0) = 1 , where S 0 is the baseline signal intensity. Inserting this ansatz into (1) yields 

A 

′ (t) 

A (t) 
= −w (t) , (3) 

with w (t) = L T · DL , and straightforward solution in the form 

A (t) = exp 

(
−

∫ t 

0 

w (s ) ds 

)
. (4) 

Assuming the Stejskal–Tanner sequence [18] , which as shown in Fig. 1 consists of a pair of opposed rectangular pulses 

of duration δ, separation �, amplitude G , and unit direction g , then w ( t ) becomes 

w (t) = g 

T Dg 

[
γ

∫ t 

0 

| G (s ) | ds 

]2 

= g 

T Dg ×

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 , 0 < t ≤ t 0 
(γ G ) 2 (t − t 0 ) 

2 , t 0 < t ≤ t 0 + δ
(γ Gδ) 2 , t 0 + δ < t ≤ t 0 + �

( γ G ) 2 ( t 0 + � + δ − t) 2 , t 0 + � < t ≤ t 0 + � + δ
0 , t 0 + � + δ < t 

(5) 

(note that × denotes scalar and not cross vector product throughout this contribution). Integrating (4) through the different 

time intervals, the amplitude of the acquired signal at the end of the pulse sequence is given by the exponential decay 

S/S 0 = exp 

(
−b g 

T Dg 

)
, (6) 

where b = ( γ Gδ) 
2 
( � − δ/ 3 ) is the so-called b value. 
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