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a b s t r a c t 

A method for studying the behavior of the elements of dynamical networks is introduced. 

We measure the amount of instability stored at each element according to the value of the 

mean complexity related to this element. Elements with close values of the mean complex- 

ity can be unified into complexity clusters; elements with the smallest values of complex- 

ities form dynamical hubs. The effectiveness of the method is manifested by its successive 

application to networks of coupled Lorenz systems. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the last years, scientists pay considerable attention to the study of complex networks, i.e., systems consisting of a large 

number of interacting subsystems (elements). Such systems can occur in physics, chemistry, biology, neuroscience, sociology, 

etc. Complex networks can be divided into two classes, namely, static and dynamical ones. In the static networks there is 

no individual dynamics at elements and couplings, and the geometry (topology) of coupling is fixed [1–4] . Therefore, the 

behavior of such networks is determined only by the geometry (topology) of coupling. On the other hand, in the dynamical 

ones either elements and/or the couplings and/or geometry (topology) of coupling can vary with time according to the 

dynamical law [5–7] . While a theory of static networks is now well developed, and, in particular, many different quantities 

(such as vertex degree, average distance, shortest path, clustering coefficient, etc) have been introduced and used, no general 

theory exists for dynamical networks (DN), and only a few characteristics reflecting the features of theirs dynamics were 

presented. 

In this article, we restrict our study to the class of DN where the geometry of coupling is fixed, but each element 

possesses its own dynamics. We suggest a new characteristic for such a DN, which takes into account both the topology of 

its coupling and the individual dynamics of its elements. We deal with DN that (for the case of continuous time) is a system 

of the form 

˙ y = F (y ) , y = { y i } , y i ∈ R 

p i , p := 

∑ 

p i , (1) 

∗ Corresponding author. 

E-mail addresses: valentin.afraimovich@gmail.com (V. Afraimovich), admitry@neuron.appl.sci-nnov.ru (A. Dmitrichev), vnekorkin@neuron.appl.sci-nnov.ru 

(V. Nekorkin). 

http://dx.doi.org/10.1016/j.cnsns.2017.07.005 

1007-5704/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.cnsns.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2017.07.005&domain=pdf
mailto:valentin.afraimovich@gmail.com
mailto:admitry@neuron.appl.sci-nnov.ru
mailto:vnekorkin@neuron.appl.sci-nnov.ru
http://dx.doi.org/10.1016/j.cnsns.2017.07.005


V. Afraimovich et al. / Commun Nonlinear Sci Numer Simulat 55 (2018) 166–173 167 

where the vector-function F = { F i } is defined as follows. There is an oriented graph G containing m vertices v 1 , . . . , v m 

. Given 

index i , the indices j 1 (i ) , . . . , j s (i ) form the neighborhood of i according to the graph G if for each j t ( i ) there exists an edge 

starting at v j t (i ) and ending at v i , t = 1 , . . . , s, and every edge in the graph G ending at v i coincides with one of the edges 

starting at v j 1 (i ) , . . . , v j s (i ) . Let K i = { j 1 (i ) , . . . , j s (i ) } be the neighborhood of i in the graph G . System (1) can be rewritten as 

˙ y i = F i ({ y j } , j ∈ K i ) , i = 1 , . . . , m. (2) 

or 

˙ y i = F i (y j 1 (i ) , . . . , y j s (i ) ) , i = 1 , . . . , m. 

For the DN with discrete time, the dynamical system is generated by the map H : R p → R p , H(y (n )) = y (n + 1) , where H = 

{ H i } and 

y i (n + 1) = H i ({ y j (n ) } , j ∈ K i ) , i = 1 , . . . , m. (3) 

In Section 2 , we start with the notions of complexity functions. Then in Section 3 we adjust the notion of a local complexity 

function to DN and introduce a new characteristic – the so-called mean complexity that determines the “amount of insta- 

bility” stored at each element of the DN. In Section 4 , we present the results of calculations of the mean complexities for 

a specific DN. We show that a new characteristic allows one to detect dynamical hubs and complexity clusters. Section 5 is 

devoted to concluding remarks. 

2. Local complexity functions: general definitions 

In this Section, we recall the definitions of complexity functions and local complexity functions [8] (see [9–12] ). We con- 

sider a dynamical system ( f t , M ), where M is a metric space endowed with a metric d ( x, y ) and f t : M → M is a semi-group 

of evolution operators (the time t ≥ 0 can be continuous or discrete). The following definitions are based on the notion of 

Kolmogorov ε-separability that was adjusted to the dynamical systems area by R. Bowen (see for instance [13] ). 

Definition 1. 

(i) The points x, y ∈ M are ( ε, t )-separated if there exists τ , 0 ≤ τ ≤ t , such that dist( f τ x, f τ y ) ≥ ε. 

(ii) A set A ⊂ M is ( ε, t )-separated if every pair x, y ∈ A is ( ε, t )-separated. 

(iii) The number 

C ε,t (A ) = max { card B, B ⊂ A, B is (ε, t) -separated } 
is called the ( ε, t )-complexity of the set A , where card B is the cardinality (the number of elements) of the set B . 

The asymptotic behavior (as t → ∞ or/and ε → 0) of C ε, t ( A ) tells us both about instability of the trajectories started at 

the initial points belonging to A and about metric features of A . Indeed, one can use the topological entropy (see [14] ) 

h = h̄ ( f | A ) := lim 

ε→ 0 
lim 

t→∞ 

ln C ε,t 

t 

and the fractal dimension of A (see [15] ) 

b = b(A ) = lim 

t→∞ 

lim 

ε→ 0 

ln C ε,t 

− ln ε 

to see that if 0 < h < ∞ and 0 < b < ∞ , then 

C ε,t (A ) = e ht · e −b · C (ε, t) , 

where 
ln C ε,t 

t → 0 as t → ∞ and 

ln C ε,t 

− ln ε 
→ 0 as ε → 0 (see, for instance, [13] ), at least for some large values of t and small values 

of ε. It allows one to distinguish deterministic processes (the case h < ∞ and b < ∞ ) from the random ones. Moreover, even 

for finite values of time the quantity C ε, t ( A ) measures the amount of instability developed in the system restricted to a set 

A of initial conditions in the temporal interval [0, t ]. 

Unfortunately, it is very difficult to work with Definition 1 in specific cases. We shall use a simplified version of it – the 

so-called local complexity function [8,9,11] . It is based on measuring the divergence of trajectories in the neighborhood of a 

fixed one. 

Definition 2. Given ε > 0, point x 0 and set A 	 x 0 with diam A 
 ε, the set Q N = { x k } N k =1 ⊂ A is said to be locally ( ε, t )-separated 

if 

(i) for each x k , there is τ k ∈ [0, t ) such that 

dist ( f τk x 0 , f 
τk x k ) ≥ ε (4) 

and 

dist ( f τ x 0 , f 
τ x k ) < ε, 0 ≤ τ < τk ; (5) 
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