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a b s t r a c t 

We study the dynamics of an ensemble of non interacting particles constrained by two 

infinitely heavy walls, where one of them is moving periodically in time, while the other 

is fixed. The system presents mixed dynamics, where the accessible region for the par- 

ticle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analy- 

sis for the root mean square velocity, considering high and low velocity ensembles, leads 

the dynamics to the same steady state plateau for long times. A transport investigation 

of the dynamics via escape basins reveals that depending of the initial velocity ensem- 

ble, the decay rates of the survival probability present different shapes and bumps, in 

a mix of exponential, power law and stretched exponential decays. After an analysis of 

step-size averages, we found that the stable manifolds play the role of a preferential path 

for faster escape, being responsible for the bumps and different shapes of the survival 

probability. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Hamiltonian systems are typically non-integrable and non-ergodic [1–3] , where their dynamics present mixed properties 

in the phase space, with KAM islands, invariant tori, spanning curves and chaotic seas. One of the main consequences of 

this mixed dynamics is the anomalous transport that a chaotic orbit may experience when passing near by stability regions. 

The orbit can stick to their boundaries, thus getting trapped around the bounded area of these islands and its cantori for 

a finite time (that could be long), in what it known as stickiness effect [4,5] . Applications of this trapping phenomenon 

can be found in many research areas as: fluid mechanics [6] , plasma physics [7–9] , celestial mechanics [10] , acoustics [11] , 

biology [12] , among others (See Ref. [1,2] for reviews). This anomalous behavior serve as motivation for our study, where the 

interface between chaotic, quasi-periodic and stable dynamics is very complex and not yet fully understood and generates 

some open problems [13,14] . 
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A natural observable allowing the study of the statistical properties of the transport, in particular ρ( n ), the probability 

(given a suitable distribution of initial conditions) that an orbit does not escape through a hole until a time n . Here, the 

hole is defined as a predefined subset of the phase space. The most important aspect of this analysis is that the escape 

rate is very sensitive to the system dynamics. For strongly chaotic systems the decay is typically exponential [15–18] , while 

systems that present mixed phase space the decay can be slower, presenting a mix of exponential with a power law [19–21] , 

or even stretched exponential decay [22] . Indeed, when a non-exponential decay is observed the dynamics would require a 

long range correlation. This is a direct consequence of the stickiness influence in the dynamics. 

The model under study in this paper is the Fermi–Ulam model (FUM). The FUM was proposed by Ulam in early60s 

[23] as an attempt to produce a prototype that could explain the Fermi Acceleration [24] (unbounded energy growth). The 

system consists of an ensemble of non interacting particles confined to move between two infinitely heavy walls, which the 

particles collide elastically. One wall is assumed to be fixed while the other one oscillates periodically in time. The phase 

space is mixed and contains periodic islands surrounded by a chaotic sea, which is limited by a set of invariant spanning 

curves [15,25] . This implies that we have a finite portion of the phase space for orbits to diffuse [15] , which prevents the 

dynamics to exhibit unlimited diffusion in the velocity. The mechanics of the model leads to a complex variety of nonlin- 

ear phenomena in both conservative and dissipative dynamics [26–30] . From an experimental and quantum point of view, 

one can imagine the FUM as a schematic where an atom or a photon bounces under the influence of strong electromag- 

netic pulses, with applications in astrophysics [31] , where the radiated energy represents a typical realization of an on-off

intermittent process, atom-optics [32,33] , quantum effects [34–36] and experimental devices [37,38] , where atoms can be 

trapped in featured resonances by optical cavities and ultra cold potentials. 

In this paper we investigate and seek to understand the stickiness influence in the transport for a non-dissipative FUM. 

Since the accessible phase space have a finite portion for the orbit to diffuse, it can be divided into two regions of high 

and low energy regimes, that depends on the initial velocity of the ensemble. In previous studies [15,25] , only the lower 

ensemble of energy (basically composed by chaotic sea) was investigated, leaving aside the higher ensemble, which has 

more complicated dynamics with chains of islands, cantori and small portions of chaotic sea, and seems more interesting 

to be studied. So, in this paper we give focus to the higher ensemble, but not neglecting the lower one as well, yielding in 

a complete overview of the dynamical scenario for the FUM. Statistical analysis concerning the root mean square velocity 

shows that for both regimes we have a convergence to a steady state plateau for long time series. A transport analysis 

shows that there is stickiness in both ensembles, and it influences the decay rates of the survival probability, presenting 

different shapes and bumps in a mix of exponential, power law and stretched exponential decays. After an analysis of step- 

size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for 

the bumps and different shapes of the survival probability. These results give support to the stickiness influence towards to 

the anomalous transport and diffusion, where orbits can produce an extreme slower decay rates of the survival probability, 

with different bum ps and shapes when com pared with regular chaotic motion, and also can be extended to other similar 

dynamical systems. 

The paper is organized as follows: In Section 2 we describe the details of the FUM mapping and some chaotic properties. 

Section 3 is devoted to the statistical analysis of the average velocity, as well as, the investigation of the anomalous transport 

and diffusion, concerning escape basins, survival probability curves and histogram of frequencies. Finally, in Section 4 we 

drawn some final remarks, conclusions and perspectives. 

2. The model, the mapping and chaotic properties 

In this section we will describe the model under study, so called Fermi–Ulam model (FUM), which consists of the motion 

of a free particle that suffers elastic collisions with two heavy walls, where one of them is said to be fixed at x = l, and 

the other one is periodic oscillating around x = 0 . Dissipation could be introduced in the system via inelastic collisions 

[39] where a damping coefficient can be considered on the walls [40] . Also, kinetic friction [41] and in flight dissipation 

[42] can be introduced as well. However, in this paper we will consider only the conservative version, where the collision 

with both walls are completely elastic. The dynamics of this system is described by a non-linear and measure preserving 

mapping for the variables velocity of the particle v and time t immediately after a n th collision of the particle with the 

moving wall. 

There are two distinct versions of the dynamics description: the complete one, which consists in considering the com- 

plete movement of the time-dependent wall, and the simplified, that is often used to speed up numerical simulations, where 

the moving wall is set to be fixed, but the particle exchanges momentum and energy with it, as if the wall were normally 

moving. Both approaches produce a very similar dynamics considering conservative and dissipative cases [15,25] . We con- 

sider in this paper the complete version, whose the position of the vibrating wall is given by x w 

(t n ) = ε cos wt n , where ε
and w are respectively the amplitude and the frequency of oscillation. 

The dynamics is described using a two-dimensional mapping, where the background formalism and mathematical tools 

backs to Pustyl ′ nikov [43] . We notice that are three control parameters, named � , ε and w , and not all of them are relevant. 

We then define the following dimensionless and more convenient variables as: V n = v n /wl, ε = ε/l and measuring the time 

in terms of the number of oscillations of the moving wall φn = wt n . Starting with an initial condition ( V n , φn ) with initial 

position of the particle given by x p (φn ) = cos (φn ) , the dynamics is evolved by a map T which gives the pair (V n +1 , φn +1 ) in 



Download English Version:

https://daneshyari.com/en/article/5011451

Download Persian Version:

https://daneshyari.com/article/5011451

Daneshyari.com

https://daneshyari.com/en/article/5011451
https://daneshyari.com/article/5011451
https://daneshyari.com

