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a b s t r a c t 

We focus on power-law coherency as an alternative approach towards studying power- 

law cross-correlations between simultaneously recorded time series. To be able to study 

empirical data, we introduce three estimators of the power-law coherency parameter H ρ

based on popular techniques usually utilized for studying power-law cross-correlations –

detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation 

analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample proper- 

ties study, we focus on the bias, variance and mean squared error of the estimators. We 

find that the DMCA-based method is the safest choice among the three. The HXA method 

is reasonable for long time series with at least 10 4 observations, which can be easily at- 

tainable in some disciplines but problematic in others. The DCCA-based method does not 

provide favorable properties which even deteriorate with an increasing time series length. 

The paper opens a new venue towards studying cross-correlations between time series. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Analyzing fractal properties of time series has been a significant contribution of physics to a broad range of other 

disciplines [1–15] . In time series, fractal properties translate directly into specific correlation structures. Hurst exponent H , 

as a characteristic parameter of fractal series, provides an insight into asymptotic scaling of the auto-correlation function, 

specifically its power-law decay. In the case of stationary series, we have 0 ≤ H < 1 with a separating point of H = 0 . 5 

characteristic for uncorrelated series. Persistent or long-range correlated series with H > 0.5 follow local trends but still 

remain mean reverting and stationary, while anti-persistent series with H < 0.5 are distinctive by their excessive switching 

(with respect to uncorrelated processes) [16] . 

Recently, the methodological framework has been generalized into the bivariate setting so that not only long-range 

correlations but also long-range cross-correlations can be studied using methods developed in physics [17–23] . The most 

popular ones have been the detrended fluctuation analysis (DFA) [24,25] and the detrended cross-correlation analysis (DCCA 

or DXA) [26–28] as its bivariate generalization. The development of DCCA has motivated others in introducing alternative 

methods such as the detrending moving-average cross-correlation analysis (DMCA) [29,30] and the height cross-correlation 

analysis (HXA) [31] . These estimators of the bivariate Hurst exponent H xy provide an additional detail about power-law 

scaling of the cross-correlation function between series. Interpretation of H xy is usually approached through its comparison 

to Hurst exponents of the separate series, i.e. H x and H y [31–33] . 
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As the next step in utilizing the fractal methods, the scale-specific correlation coefficients based on DCCA and DMCA 

have been proposed [34–36] as well as estimators of regression parameters for specific scales [37,38] . An important topic, 

which has been only slightly touched by Podobnik et al. [39] but not further developed, is the scaling of scale-specific 

correlations. However, the link between correlations scaling and bivariate Hurst exponent provides an important insight 

into the dynamics between time series. 

Here we focus on this link in detail, building on the notion of squared spectrum coherency and translating it into the 

time domain, which is more frequent in the topical literature. We propose three estimators of the power-law coherency 

H ρ based on popular time domain power-law cross-correlations methods – detrended cross-correlation analysis, detrending 

moving-average cross-correlation analysis and height cross-correlation analysis – and analyze their finite sample properties. 

This approach presents a new way how to look at and analyze dependence between simultaneously recorded series with 

applications across various disciplines. 

2. Power-law coherency 

We start with a definition of the squared spectrum coherency. For two processes { x t } and { y t } with existing power spectra 

f x ( ω) and f y ( ω), and cross-power spectrum f xy ( ω) at frequency 0 < ω ≤ π , the squared spectrum coherency is defined as 

K 

2 
xy (ω) = 

| f xy (ω) | 2 
f x (ω ) f y (ω ) 

. (1) 

If the two processes are power-law correlated so that f x (ω) ∝ ω 

1 −2 H x and f y (ω) ∝ ω 

1 −2 H y close to the origin ( ω → 0+ ) 

with respective Hurst exponents H x and H y , and in addition, the processes are power-law cross-correlated so that 

| f xy (ω) | ∝ ω 

1 −2 H xy close to the origin with bivariate Hurst exponent H xy , we have 

K 

2 
xy (ω ) ∝ 

ω 

2(1 −2 H xy ) 

ω 

1 −2 H x ω 

1 −2 H y 
= ω 

−4(H xy − H x + H y 
2 ) ≡ ω 

−4 H ρ . (2) 

as frequency ω approaches zero. We define the power-law coherency through parameter H ρ as H ρ = H xy − H x + H y 
2 to respect 

previous discussions about the relationship between the bivariate Hurst exponent H xy and an average of the separate Hurst 

exponents [32,33,40–42] . Note that the squared spectrum coherency K 

2 
xy (ω) is restricted in the same way as the squared 

correlation, i.e. 0 ≤ K 

2 
xy (ω) ≤ 1 for all frequencies ω [43] . This yields only two possible settings for the exponent – either 

H ρ = 0 or H ρ < 0 [33] . The former implies that the squared coherency goes to a constant and H xy = 

H x + H y 
2 . And the latter 

implies that as ω approaches zero so does the squared coherency but here specifically in the power-law manner and it is 

thus referred to as the power-law coherency, or anti-cointegration [32] , and it has H xy < 

H x + H y 
2 . In words, such power-law 

coherent processes might be correlated in the short term (at high frequencies or low scales) but they are uncorrelated in 

the long term perspective (at low frequencies or high scales). 

The squared spectrum coherency for frequency ω can be easily translated from the frequency domain to the time 

domain as a squared correlation for scale s = 

πT 
ω j 

parallel to frequency ω j = 

2 π j 
T with j = 1 , 2 , . . . , T 2 as 

ρ2 
xy (s ) = 

| σxy (s ) | 2 
σ 2 

x (s ) σ 2 
y (s ) 

, (3) 

where ρ2 
xy (s ) is a squared correlation between { x t } and { y t } for scale s , and σ xy ( s ), σ 2 

x (s ) and σ 2 
y (s ) represent the scale- 

specific covariance and variances, respectively. The notion of power-law coherency then translates perfectly with the only 

difference that it occurs at high scales as a parallel to low frequencies. Specifically, we have σ 2 
x (s ) ∝ s 2 H x and σ 2 

y (s ) ∝ s 2 H y 

for power-law correlated processes { x t } and { y t } [16,44] , and if the processes are power-law cross-correlated, we additionally 

have σxy (s ) ∝ s 2 H xy for s → + ∞ [45] . Substituting into Eq. 3 , we obtain 

ρ2 
xy (s ) ∝ 

s 4 H xy 

s 2 H x s 2 H y 
= s 4(H xy − H x −H y 

2 ) ≡ s 4 H ρ , (4) 

i.e. we have the same scaling exponent for both time ( s → + ∞ ) and frequency ( ω → 0+ ) domain power-law coherency. 

3. Estimators 

In this section, we recall the essentials of the bivariate Hurst exponent estimators of interest – detrended cross- 

correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA), and height cross-correlation 

analysis (HXA) – and we introduce procedures to estimate the power-law coherency parameter H ρ based on these. 

3.1. Bivariate Hurst exponent estimators 

In the DCCA procedure [26] , let us consider two time series { x t } and { y t } with t = 1 , . . . , T . Their respective profiles { X t } 

and { Y t }, defined as X t = 

∑ t 
i =1 (x i − x̄ ) and Y t = 

∑ t 
i =1 (y i − ȳ ) , for t = 1 , . . . , T , are divided into overlapping boxes of length s 
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