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a b s t r a c t 

Based on the full velocity difference model, a new car-following model is developed to in- 

vestigate the effect of short-term driving memory on traffic flow in this paper. Short-term 

driving memory is introduced as the influence factor of driver’s anticipation behavior. The 

stability condition of the newly developed model is derived and the modified Korteweg- 

de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical 

point. Via numerical method, evolution of a small perturbation is investigated firstly. The 

results show that the improvement of this new car-following model over the previous ones 

lies in the fact that the new model can improve the traffic stability. Starting and break- 

ing processes of vehicles in the signalized intersection are also investigated. The numerical 

simulations illustrate that the new model can successfully describe the driver’s anticipation 

behavior, and that the efficiency and safety of the vehicles passing through the signalized 

intersection are improved by considering short-term driving memory. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Microscopic traffic simulation based on microscopic traffic models is of great importance in analysis of road transporta- 

tion system. Car-following models are the most widely used models in microscopic traffic models. Since Pipes [1] pre- 

sented the first car-following model in 1953, an increasing number of models have been proposed. Newell [2] derived a 

car-following model with time delay which is important to explore the evolution of traffic jam. Bando et al. [3] proposed an 

optimal velocity model (OVM) to reveal the complex dynamic characteristics of traffic flow. To solve the problem of exces- 

sively high acceleration and unrealistic deceleration in OVM, generalized force model (GFM) has been developed by Helbing 

et al. [4] . Based on the GFM, Jiang et al. [5] developed a car-following model called full velocity difference model (FVDM). 

With the consideration of drivers reaction time delay, Yu et al. [6] presented an extended car-following model based on the 

FVDM and found that the time delay have effect on the stability of traffic. Davis [7] modified the OVM and found that small 

delay times are needed for lengthy platoons of vehicles to avoid collisions. Sipahi et al. [8] conducted the stability analysis 

of car-following system with gamma distributed time lag. Nagatani [9] found that the car interaction before the next car 

ahead can stabilize the traffic flow. Ge et al. [10] proposed an improved car-following model by taking an arbitrary number 

of vehicles ahead into account on a single-lane highway. Yu et al. [11] developed a new car-following model in ITS environ- 

ment by taking the effect of headway of multiple-vehicle in front into account and analyzed the traffic characteristics near 

the critical point in instability region of traffic flow by using the reductive perturbation method. Tang et al. [12] presented a 

∗ Corresponding author. 

E-mail addresses: liudawei20120901@163.com (D.-W. Liu), shizknwpu@126.com (Z.-K. Shi). 

http://dx.doi.org/10.1016/j.cnsns.2016.11.007 

1007-5704/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.cnsns.2016.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2016.11.007&domain=pdf
mailto:liudawei20120901@163.com
mailto:shizknwpu@126.com
http://dx.doi.org/10.1016/j.cnsns.2016.11.007


140 D.-W. Liu et al. / Commun Nonlinear Sci Numer Simulat 47 (2017) 139–150 

car-following model on two lanes by considering the lateral effects in traffic. They believed that vehicle drivers always worry 

about the lane changing actions from neighbor lane and the consideration of lateral effects could stabilize the traffic flows 

on both lanes. Jia et al. [13] proposed an improved car-following model with the consideration of lateral influence from 

adjacent lane by introducing the combination of two OV functions. Ge et al. [14] investigated the two-lane traffic flow with 

lane changing behaviors and derived the stability condition by using the control method. Zhou [15] proposed an improved 

full velocity difference model for car-following theory with the consideration of human driver’s visual angle. Aghabayk et al. 

[16] investigated the heavy vehicle (HV) interactions with the other vehicles using real data. Ngoduy [17] explore effect of 

the four car-following types including car-car (CC), car-truck (CT), truck-car (TC) and truck-truck (TT) on the overall linear 

stability condition of the heterogeneous traffic flow. Liu et al. [18] found that depending on the combination type and the 

equilibrium velocity, cars and truck can both stabilize and destabilize the traffic flow. Yang et al. [19] focused on the effect of 

real-time maximum deceleration in car-following, and established a car-following model accordingly to modify the desired 

minimum gap and structure of the intelligent driver model. Zheng et al. [20] derived a similar backward-looking model 

reflecting drivers’ response to upstream traffic stimuli and then put forward a continuum traffic flow model to investigate 

the bidirectional information impact. Xu et al. [21] proposed a new asymmetric optimal-velocity car-following model by 

introducing a exponential function with an asymmetrical factor, they find that the deceleration is stronger than acceleration 

with the same velocity difference. 

In recent years, research on driving behaviors has undergone a rapid development. As a kind of typical driving behaviors, 

driver’s anticipation behavior has therefore been widely studied. A wide class of time-continuous microscopic traffic models 

has been generalized by Treiber et al. [22] to include essential aspects of driver behavior. They found that the destabilizing 

effects of reaction times and estimation errors can essentially be compensated for by spatial and temporal anticipation. 

Tang et al. [23] extended the OVM with the consideration of the driver’s forecast effect. Ngoduy et al. [24] developed an 

improved multi-anticipative macroscopic model from a gas-kinetic model in which the multi-anticipative driving behavior 

is explicitly described through an extended generalized force model. Zheng et al. [25] presented an anticipation optimal 

velocity model and derived the modified Korteweg–de Vries equation to study the nonlinear character of the new model. 

Peng et al. [26] developed an extended model based on FVDM through substituting an anticipation optimal velocity with 

optimal velocity and discussed the impact of driver’s forecast on traffic flow stability. Tian et al. [27] improved the FVDM by 

introducing the velocity anticipation and found that the new model could avoid accidents under urgent braking cases when 

the anticipation time interval was increased enough. Hu et al. [28] constructed an extended multi-anticipative delay model 

by introducing multiple velocity differences and incorporating the reaction-time delay of drivers. Ge et al. [29,30] proposed 

a car-following model considering anticipation driving behavior and derived the KdV–Burgers equation in a new anticipation 

continuum model. Ngoduy [31] believed that the multi-anticipative driving behavior describes the reaction of a vehicle to 

the driving behavior of many vehicles in front. Kang et al. [32] presented a new car-following model of traffic flow by 

considering the driver’s individual anticipation behavior (forecast behavior and response delay behavior). 

The above studies believed that the driver’s anticipation behavior depend on the current observed traffic conditions. 

However, besides the current observed traffic conditions, there is another factor that can affect the driver’s anticipation 

behavior, namely, short-term driving memory. Studies explore that drivers have the memory effect on the historical infor- 

mation of driving state. In real traffic system, short-term memory effect has obvious influence on anticipation behavior. A 

driver often estimates the impending traffic situation and performs decision according to the driving situation of a few sec- 

onds before. Therefore, short-term driving memory has a role of feedback for drivers. Until now, short-term driving memory 

has been rarely considered in previous car-following models. In this paper, a new car-following model with a modified term 

about the short-term driving memory is derived to investigate its impact on traffic flow. 

2. Model 

Among the existing car-following models, the full velocity difference model (FVDM) proposed by Jiang et al. [5] is one 

of the efficient car-following models. The existing studies show that FVDM can describe many complex phenomena in real 

traffic, such as shock waves, rarefaction waves, stop-and-go waves, and local cluster effects. The full velocity difference model 

can be formulated as follows: 

dx 2 n ( t ) 

d t 2 
= a 

[
V ( �x n ( t ) ) − d x n ( t ) 

dt 

]
+ λ�v n ( t ) , (1) 

where x n ( t ) and v n ( t ) denote the position and speed of the nth vehicle, �x n ( t ) = x n + 1 ( t ) −x n ( t ), �v n ( t ) = v n + 1 ( t ) −v n ( t ) rep- 

resents the headway and relative velocity between the nth vehicle and the ( n + 1) th vehicle respectively. a is the sensitivity 

coefficient for the difference between the optimal and the current velocities, and λ represents the sensitivity coefficient of 

response to �v n ( t ). The notation V ( �x n ( t )) is the optimal velocity function and can be defined as follows: 

V ( �x n ( t ) ) = V 1 + V 2 tanh ( c 1 ( �x n ( t ) − Lc ) − c 2 ) (2) 

Parameters in the Eq. (2) are set as: {
V 1 = 6 . 75 m/ s, V 2 = 7 . 91 m/s 

c 1 = 0 . 13 m 

−1 , c 2 = 1 . 57 , Lc = 5 m 

(3) 
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