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a b s t r a c t 

Nonlinear oscillators are ubiquitous in sciences, being able to model the behavior of com- 

plex nonlinear phenomena, as well as in engineering, being able to generate repeating 

(i.e., periodic) or non-repeating (i.e., chaotic) reference signals. The state of the classical 

oscillators known from the literature evolves in the space R 

n , typically with n = 1 (e.g., 

the famous van der Pol vacuum-tube model), n = 2 (e.g., the FitzHugh–Nagumo model of 

spiking neurons) or n = 3 (e.g., the Lorenz simplified model of turbulence). The aim of the 

current paper is to present a general scheme for the numerical differential-geometry-based 

integration of a general second-order, nonlinear oscillator model on Riemannian manifolds 

and to present several instances of such model on manifolds of interest in sciences and 

engineering, such as the Stiefel manifold and the space of symmetric, positive-definite ma- 

trices. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nonlinear oscillators (both autonomous and driven) have been widely studied in the scientific literature either because 

they arise naturally in the process of modeling complex physical structures and because they constitute the basis for several 

modern applications. Paradigmatic examples of nonlinear oscillators obtained from models of complex physical systems are 

the van der Pol oscillator, that arose from a model of vacuum tubes [29] , and the Lorenz oscillator [22] , that was derived 

from the simplified model of convection rolls in the atmosphere and has important implications in climate and weather 

predictions. The literature is rich in Lorenz-like systems, such as the Chen system and the Lü system [21] . Paradigmatic 

applications of designed oscillators (either self-sustained or controlled) is to the secure transmission of information [40] , to 

the active damping of mechanical vibrations [9] , and to the analysis of bivariate data by a coupled-oscillators approach [34] . 

A detailed list of applications of non-linear, chaotic, oscillators in science and engineering may be found, e.g., in the review 

paper [6] . We would like to cite two, in particular, that appear as especially relevant, as they relate chaos analysis with 

a powerful signal-processing technique known as Independent Component Analysis (ICA), namely, wearable mental-health 

monitoring [33] , and seismic signal detection and characterization [1] . 

The state of nonlinear oscillators evolves over time in complex, non-repeating, deterministic patterns. Most nonlinear 

oscillators appear as first-order or second-order dynamical systems involving a single real variable. The simplest model 

is perhaps the linear harmonic oscillator . As no damping is present, the harmonic oscillator preserves its initial energy 
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Fig. 1. Exemplary behavior of an Hindmarsh–Rose model in terms of the three variables (V, n, h ) ∈ R 3 . The thick circle denotes the initial point, while the 

thick diamond denotes the final point of the trajectory. 

indefinitely. An example of ‘damped’ oscillator is the van der Pol oscillator model, which is closely-related to biologically- 

inspired nonlinear dynamical systems such as the FitzHugh–Nagumo model [16] , the Hodgkin–Huxley model of the 

activation and deactivation dynamics of spiking neurons and the Hindmarsh–Rose model [37] , that augments with a slow 

variable the planar FitzHugh–Nagumo model. Another well-studied nonlinear system that exhibits a complex behavior is 

the Duffing oscillator that models, for example, a spring pendulum whose spring’s stiffness does not exactly obey Hooke’s 

law [36] . 

Examples of dynamical systems involving more than one variable are known in the scientific literature. A nonlinear, 

three-dimensional, deterministic dynamical system is the Rabinovich–Fabrikant oscillator [30] . It is described by a set of 

three coupled ordinary differential equations comprising two parameters, which may exhibit a complex behavior for certain 

values of the parameters, while for other values of the parameters its flow may tend to a stable periodic orbit. Likewise, 

the Rössler oscillator [35] helps describing equilibrium in chemical reactions. In addition, a three-dimensional nonlinear 

oscillator is the Colpitts circuit, built up of a bipolar junction transistor and a resonant network consisting of an inductor 

and two capacitors [24] . 

The state of the above nonlinear oscillators recalled from the scientific literature evolves in the real line R or in the real 

plane R 

2 or in the ordinary space R 

3 . As an example, the Fig. 1 illustrates the state of an Hindmarsh–Rose model in terms of 

the three variables (V, n, h ) ∈ R 

3 . The present paper aims at extending previous studies on nonlinear autonomous oscillators 

from flat Euclidean spaces to high-dimensional curved Riemannian manifolds. Riemannian manifolds of interest in the 

literature are the Stiefel manifold (along with the special cases of the unit-hypersphere and the orthogonal group), the 

space of symmetric, positive-definite matrices and the special orthogonal group. In particular, the current contribution aims 

at presenting discrete-time nonlinear autonomous oscillators equations that may be implemented on a computing platform 

and at investigating to what extent the obtained discrete-time dynamical system replicates its theoretical continuous-time 

differential-geometric properties. 

The theory and practice of non-linear oscillators is one of the topics of prime interest in the nonlinear science com- 

munity, as testified by a number of papers about non-linear oscillators in mobile robotics [5] , thermodynamics [27] , signal 

transmission and processing [39,43] , mathematical optimization [46] and artificial intelligence [44] . The motivation and 

fundamental aim of the present contribution is to open new perspectives in the theory of nonlinear damped oscillators on 

curved spaces and to promote research effort s in this field. 

The current paper is organized as follows. The Section 2 recalls the notation used in differential geometry (in 

Subsection 2.1 ) and describes a general second-order dynamical system derived by the analysis of a point-wise par- 

ticle sliding on a smooth manifold following the landscape of a potential energy function and under the effect of 

passive/active damping (in Subsection 2.2 ); the Subsection 2.3 illustrates the notation and the general structure of the 

second-order oscillator via a 1-dimensional example. The Subsection 3.1 describes discrete-time second-order autonomous 

oscillators on the unit-hypersphere, the Subsection 3.2 describes oscillators on a Lie group, namely, the manifold of 

special orthogonal matrices, the Subsection 3.3 deals with the manifold of symmetric, positive-definite matrices, and 

the Subsection 3.4 illustrates discrete-time second-order autonomous oscillators on the compact Stiefel manifold, for 

which several quantities of interest are not available in closed form; the Subsection 3.5 discusses the problem of the 

(lack of) conservation of energy in theoretically-conservative systems due to finite-length stepping in discrete-time sys- 

tems. The Section 4 illustrates the developed theory by means of two examples of oscillators on the sphere S 2 that 

allows graphical rendering. The Section 5 concludes the paper and outlines some foreseen applications and theoretical 

research. 
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