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a b s t r a c t 

In this paper an asymmetric planar continuous piecewise linear differential system with 

three zones ˙ x = y − F (x ) , ˙ y = −g(x ) is considered. The aim of this paper gives a completely 

study of limit cycles when this system satisfies such conditions and the uniqueness equi- 

librium does not lie in the central region. When (x − x 0 ) g(x ) > 0 for ∀ x � = x 0 and y = F (x ) 

is a Z -shaped curve, it owns at most two limit cycles, which exist between a linear Hopf 

bifurcation surface and a double limit cycle bifurcation surface. Moreover, we prove the 

conjectures proposed by Ponce et al. [27]. When the uniqueness equilibrium lies in the 

central region, this system has exactly one limit cycles by others. Finally, some numerical 

examples are demonstrated. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

For some decades, the piecewise linear systems (PWL systems, for short) offer a good platform for the studying on 

nonlinear dynamical systems, see Refs. [2,5–8,11–17,19,20] , and the references therein. 

Here, we naturally have a question why PWL systems is so important. A main reason is that the class of PWL systems 

is a very important class of nonlinear dynamical systems. Firstly, in engineering, many electronic engineering and nonlinear 

control systems can be accurately modeled by PWL systems. Secondly, in mathematical biology, the PWL systems can consti- 

tute approximate models, see [9,21,22] . Thirdly, the discontinuous limit of a smooth oscillator can be changed into piecewise 

linear systems, see [4] . Besides, the global dynamics of some smooth models can be approximated by PWL systems since 

nonsmooth piecewise linear phenomena can be thought as the uniform limit of smooth nonlinearity, see [3] . 

Interestingly, as said in [20] , for almost all the instance of dynamics (such as limit cycles, homoclinic loop, heteroclinic 

loop and strangle attractors ...) found in general smooth nonlinear systems, PWL systems also have similar dynamical behav- 

ior. Moreover, PWL systems even have special dynamical behavior, such as grazing bifurcation and sliding bifurcation, see 

[2] . 

However, the description of all possible nonlinear responses for PWL systems and their rigorous mathematical justifica- 

tion are tasks only partial undertaken, since many results coming from standard differential dynamics cannot be applied to 

PWL systems. Moreover, new specific results are still needed even in the seemingly simpler cases. On the other hand, the 

complete dynamical analysis of PWL systems will be a formidable task since the standard forms of this systems have many 

parameters. 
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Originally released in sixty years of the last century, Andronov et al. started the pioneering investigations of PWL systems 

in a rigorous, see [1] . In recent years, this is worth mentioning that some Spanish mathematicians (such as Freire, Llibre and 

Ponce) have many contributions about PWL systems. Undoubtedly, when the work about PWL chaotic systems occurred, the 

analysis of PWL systems received more attention than before, see [18] and reference therein. 

The boundaries between two different linear zones of PWL systems are responsible for the nonsmoothness of the vector 

field. Moreover, they are assumed to two parallel straight lines in the case of three zones. In applications which deal with 

some simple models about electronic or nonlinear mechanics, three zones is enough to capture the corresponding dynamics, 

see [1,2,5] . In particular, as far as we know, the majority of known results for PWL systems with three zones have symmetry, 

except [15,16,20] . In this paper we focus the attention on limit cycles of non-symmetric PWL systems. It is worth noting that 

there is few result about at most two limit cycles of non-symmetric PWL systems. We will prove a class PWL systems has 

at most two limit cycles and exact two ones for special parameter values. 

The rest of the paper is organized as follows. In the Section 2 , we give main results which are necessary and sufficient 

conditions of the number of limit cycles for a class of PWL systems. In the Section 3 , when the unique equilibrium lies in 

a straight line, we completely study the number of limit cycles. In the Sections 4 and 5 , when the unique equilibrium lies 

in the right zone, we also completely study the number of limit cycles. Finally, some numerical examples are given in the 

Section 6 . 

2. Statement of the main results 

We define a asymmetric piecewise linear differential system with three zones defined by 

˙ x = y − F (x ) , ˙ y = δ − g(x ) , (1) 

where 

F (x ) = 

{ 
t R (x − 1) + t C , if x > 1 , 

t C x, if | x | ≤ 1 , 

t L (x + 1) − t C , if x < −1 , 

and 

g(x ) = 

{ 
r(x − 1) + c, if x > 1 , 

cx, if | x | ≤ 1 , 

l(x + 1) − c, if x < −1 . 

System (1) are introduced in [15,16,20] . Moreover, it has many applications, such as application to the study of a simple 

oscillator with one memristor(see [16] ) and Wien bridge oscillator(see [20] ). When the system (1) is symmetric about the 

origin, i.e., 

δ = 0 , t R = t L , r = l, 

limit cycles have been studied in Refs. [7,8,11,17] . When the system (1) has two linearity zones, i.e., 

c = l, t C = t L or c = r, t C = t R , 

limit cycles have been studied in Refs. [15,16,20] . When the system (1) is asymmetry and has a unique equilibrium, limit 

cycles of this system have been studied in Refs. [15,16,20] . 

When l, c, r > 0, the system (1) has a unique equilibrium E : ( x 0 , y 0 ), where 

(x 0 , y 0 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
δ − c 

r 
+ 1 , 

t R (δ − c) 

r 
+ t C 

)
, for δ > c;(

δ

c 
, 

t C δ

c 

)
, for − c ≤ δ ≤ c;(

δ + c 

l 
− 1 , 

t L (δ + c) 

l 
− t C 

)
, for δ < −c. 

When δ = c (resp. −c), E lies in the straight lines x = 1 (resp. −1 ); when δ > c (resp. < −c), E lies in the right (resp. left) 

region; when −c < δ < c, E lies in the central region, see [20] . Let 

e := 

δ − c 

r 
. 

Translating E to the origin, i.e., 

(x, y ) → (x + e + 1 , y + t R e + t C ) , 

the system (1) can be rewritten as 

˙ x = y − ˆ F (x ) , ˙ y = − ˆ g (x ) , (2) 
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