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a b s t r a c t 

Exact bright, dark, antikink solitary waves and Jacobi elliptic function solutions of the gen- 

eralized Benjamin-Bona-Mahony equation with arbitrary power-law nonlinearity will be 

constructed in this work. The method used to carry out the integration is the F-expansion 

method. Solutions obtained have fractional and integer negative or positive power-law 

nonlinearities. These solutions have many free parameters such that they may be used 

to simulate many experimental situations, and to precisely control the dynamics of the 

system. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The search of exact solutions for evolution nonlinear partial differential equations (NLPDEs) plays an important role in 

the study of nonlinear physical phenomena. This is due to the fact that, nonlinear phenomena are ubiquitous in nature, thus 

appear in a wide range of fields in physics, mathematical physics, and engineering. Some celebrated evolution NLPDEs are 

the Hasegawa–Mima equation [1] which describes turbulence in plasma physics, the Fitzhugh–Nagumo equation [2] that 

models biological neuron, the Hunter–Saxton equation [3,4] used to study waves orientation in nematic liquid crystal, the 

nonlinear Schrödinger equation that models the dynamics of waves in many media such as matter waves in Bose–Einstein 

condensates [5] , the evolution of electromagnetic fields in fiber optics [6] , the evolution of gravity driven surface water 

waves [7] , the evolution of the order parameter in the BCS theory [8] , just to name a few. 

In the past five decades, a great deal of attention has been paid to the dynamics of shallow water waves, mainly modeled 

by an evolution NLPDE known as the Korteweg-de Vries (KdV) equation [9] , and modified KdV equations [9] . The KdV 

equation is valid when the water depth is constant and is derived under the assumption of small wave-amplitude and 

large wave length. Modified KdV equations include KdV equations with varying bottom and higher order corrections of the 

KdV equation. Solutions of the KdV and modified KdV equations have actively been investigated, and include solitary waves 

which come from a delicate balance between dispersion and nonlinearity, periodic waves like the Jacobi elliptic function 

solutions and so on [9,10] . 
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In 1972, the regularized long-wave equation, better known as the Benjamin-Bona-Mahony (BBM) equation [11] were in- 

troduced as a regularized form of the KdV equation. As pointed out in [11,12] , the BBM equation better describes long waves 

and, as far as the existence, uniqueness and stability are concerned, the BBM equation has some substantial advantages over 

the KdV equation [11] . Moreover, the BBM equation also finds applications in other contexts such as the modeling of the 

drift of waves in plasma physics or the Rossby waves in rotating fluids [13] , wave transmission in semi-conductors and opti- 

cal devices [14] , hydromagnetic waves in cold plasma, acoustic waves in anharmonic crystals, and acoustic gravity waves in 

compressible fluids [11] . In the past four decades, the BBM equation and its various versions have been intensively studied, 

and many types of solutions have been found among them solitary waves and periodic waves which can be found in the 

explicit literature. A classification of some forms of the BBM equation and their solutions can be found in [15] . Unlike the 

KdV equation, the BBM equations are not exactly integrable in the sense of the Painlevé test of integrability. Nevertheless, 

various techniques have been developed which help to carry out the integration of BBM equations. Among them are the 

tanh and the sine-cosine methods [16] , the Jacobi elliptic function expansion method [17] , the first integral method [18] , 

the variable-coefficient balancing-act method [19] , the hyperbolic auxiliary function method [20] , the homogeneous balance 

method [21] . A generalized (1+1) BBM equation with dual arbitrary power-law nonlinearity may be written in dimensionless 

form as [22,23] 

u t + αu x + (βu 

n + γ u 

2 n ) u x − δu xxt = 0 , (1) 

where u is the wave profile, α and δ are the dispersion coefficients, n is the arbitrary power-law nonlinearity, β and γ the 

coefficients of the dual power-law nonlinearity. For α = 1 , β = 1 , n = 1 , γ = 0 , and δ = 1 Eq. (1) recovers the BBM equa- 

tion. Wazwaz solved Eq. (1) in the case where α = 1 , δ = −1 , β = 0 by means of the tanh and the sine-cosine methods, 

and obtained solitary and periodic solutions [24] . Yang, Tang, and Qiao constructed solitary and periodic wave solutions of 

Eq. (1) for α = 0 , n > 0 and δ � = 0 using an improved tanh function method [22] . Liu, Tian, and Wu used the Weierstrass 

elliptic function method to construct two solutions of Eq. (1) for α = 0 in terms of the Weierstrass elliptic functions [25] . 

Biswas employed the solitary wave ansatz method and proposed a one-soliton solution of Eq. (1) [23] . All the latter works 

show the importance of investigating solutions of the BBM equation given by Eq. (1) . However, to the best of our knowl- 

edge, Eq. (1) with non-vanishing coefficients has only been tackled in the work of Ref. [23] where a one-soliton solution 

was found. As an evolution NLPDE with important applications in different fields in physics, it is important to find more 

solutions of Eq. (1) that may help to have a better understanding of physical phenomena or at least give orientations for 

future applications. For example, solitary and Jacobian elliptic function solutions have been intensively used for practical 

applications in physics and engineering; these solutions have not been fully investigated for the generalized BBM equation 

( Eq. (1) ) with all non-vanishing coefficients. 

The aim of this work is to construct solitary and Jacobi elliptic wave solutions of the generalized BBM equation ( Eq. (1) ) 

with all non-vanishing coefficients. To this end, we use the F-expansion method introduced in [26] which has been an 

accurate tool to integrate evolution NLPDEs, along with the auxiliary ordinary equation [5,27] . The paper is organized as 

follows, in Section 2 , we construct analytical solutions of Eq. (1) . Then we discuss the characteristics and evolution of the 

solutions in Section 3 . The paper is concluded in Section 4 . 

2. Analytical solutions 

We start our quest of analytical solutions of Eq. (1) by setting the following traveling wave transformation 

u (x, t) = U(ζ ) , ζ = kx − V t , (2) 

where k is the inverse of the width of the wave and V its velocity. Inserting Eq. (2) into Eq. (1) we obtain a nonlinear 

ordinary differential equation for the function U 

(αk − V ) U ζ + k (βU 

n + γU 

2 n ) U ζ + δk 2 V U ζ ζ ζ = 0 , (3) 

with U ζ ≡ ∂U 
∂ζ

and U ζ ζ ζ ≡ ∂ 3 U 
∂ζ 3 . An integration of Eq. (3) yields 

(αk − V ) U + k 

(
β

n + 1 

U 

n +1 + 

γ

2 n + 1 

U 

2 n +1 

)
+ δk 2 V U ζ ζ = 0 , (4) 

where the right-hand side constant of integration has been set to zero. Eq. (4) is difficult to solve analytically, in order to 

find analytical solutions, we need to transform it into a more tractable and manageable form. Toward that end, we use 

the transformation ω = U 

n . After a little algebra, a nonlinear ordinary differential equation in terms of the function ω is 

retrieved 

ω ω ζ ζ + pω 

2 + qω 

3 + rω 

4 + s (ω ζ ) 
2 = 0 , (5) 

in which the parameters p, q, r, s are given by 

p = 

(αk − V ) n 

δk 2 V 

, (6a) 
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