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a b s t r a c t 

For surface gravity waves propagating in shallow water, we propose a variant of the fully 

nonlinear Serre–Green–Naghdi equations involving a free parameter that can be chosen 

to improve the dispersion properties. The novelty here consists in the fact that the new 

model conserves the energy, contrary to other modified Serre’s equations found in the 

literature. Numerical comparisons with the Euler equations show that the new model is 

substantially more accurate than the classical Serre equations, especially for long time sim- 

ulations and for large amplitudes. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Water waves in channels and oceans are usually described by the Euler equations. Due to their complexity, several ap- 

proximate models have been derived in various wave regimes. Once a new mathematical model is proposed, the limits of its 

applicability have to be determined. In shallow water, the main restriction comes from the ratio between the characteristic 

wavelength λ and the mean water depth d , the so-called shallowness parameter σ = d/λ � 1 . Restrictions on the free sur- 

face elevation are characterised by the dimensionless parameter ε = a/d, where a is a typical amplitude ( εσ = a/λ is a wave 

steepness). Many approximate equations have been derived for waves in shallow water, such as the Korteweg–deVries (KdV) 

equation [22] for unidirectional waves, the Saint-Venant equations [39] for bidirectional non-dispersive waves and many 

variants of the Boussinesq equations [4,6] for dispersive waves propagating in both directions. In addition to shallowness ( σ
� 1), KdV and Boussinesq equations assume small amplitudes (e.g. ε = O(σ 2 )) [19] . 

Considering long waves propagating in shallow water but without assuming small amplitudes (i.e. σ � 1 and ε = O(1) ), 

Serre [35] derived a so-called fully-nonlinear weakly dispersive system of equations [40,41] which, after further approxima- 

tions, include the Korteweg-deVries, Saint-Venant and Boussinesq equations as special cases. For steady flows, these equa- 

tions were already known to Rayleigh [26] . The Serre equations were independently rediscovered by Su and Gardner [38] , 

and again later by Green, Laws and Naghdi [18] . These nowadays popular equations constitute an asymptotic fully nonlin- 

ear model including all the terms up to order σ 3 into the momentum equation. Serre’s equations represent a substantial 
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improvement with respect to the Boussinesq theory [8] , but many shallow water phenomena involve significant dispersive 

effects that are not well described by Serre’s equations. 

One possibility to improve the Serre model is by including the terms of order σ 5 (and higher-order terms) into the 

momentum equation. This program was accomplished for Boussinesq equations in, e.g., [28] . However, this modification 

makes the fifth-order (and higher-order) derivatives to appear in the model equations, making its numerical resolution (and 

thus its applicability) rather challenging. Actually, the numerical resolution of these high-order Boussinesq-like equations is 

slower (and less accurate) than that of the Euler equations, at least for simple (periodic) domains. 

Another way of improving the classical model was coined by Bona and Smith [5] (see also [4,34] ). The idea consists in 

introducing a free parameter into the model that can be appropriately chosen to improve some of the desired properties. 

This can be achieved by replacing the depth-averaged velocity variable by the velocity of the fluid evaluated at a certain 

depth in the bulk of fluid [29] . Most often, this parameter is chosen to optimise somehow the dispersion relation properties 

[20,27] . In general, the community is rather focused on various linear properties of the model, even if it is used later to 

simulate nonlinear waves. 

Similar ideas have also been applied to the Serre equations with flat [12,15,25] and varying bottoms [1,2,8] . Free param- 

eters are obtained from arbitrarily-weighted averages of different (but of same order) approximations of some quantities. 

However, these modified Serre equations invalidate one fundamental physical property: the conservation of the energy. 

Some variants also invalidate the Galilean invariance [13] , that is a severe drawback for many applications. The same re- 

marks apply as well to previous works on the improved Boussinesq equations [3,30] . Thus, one may improve the dispersive 

properties of the model but, on the other hand, loses the energy conservation property. For many applications, especially in 

the case of long time simulations, the disadvantages can be crucial, overriding all the possible advantages. In the present 

paper, we address this issue, proposing a method for deriving an improved version of the Serre equations that preserves 

the aforementioned nice properties of the original Serre model. For the sake of simplicity, the method is illustrated for 2D 

waves over a horizontal bottom, but generalisations to 3D and varying bottom can be obtained in an analogous manner. 

The present paper is organised as follows. In Section 2 a simple derivation of the classical Serre equations is presented. 

It is followed by the derivation of an already known one-parameter generalisation of these equations and its shortcom- 

ings are explained. In Section 3 we derive a new one-parameter generalisation of the Serre equations that conserve the 

energy. In Section 4 we discuss several criteria for choosing the free parameter. Some numerical results are provided in 

Section 5 demonstrating the advantages of the new Serre-like equations. Finally, the main conclusions, possible generalisa- 

tions and perspectives are discussed in Section 6 . 

2. Classical and modified Serre’s equations 

Here, we derive the classical Serre equations and a modified version of these equations with an additional free parameter 

using variational methods. 

2.1. Classical Serre’s equations 

In order to model irrotational two-dimensional long waves propagating in shallow water over horizontal bottom, one can 

approximate the velocity field by the ansatz 

u (x, y, t) ≈ ū (x, t) , v (x, y, t) ≈ − (y + d) ū x , (1) 

where d is the water depth and ū is the horizontal velocity averaged over the water column — i.e., ū = h −1 
∫ η
−d 

u d y, h = η + d

the total water depth — y = η and y = 0 being the equations of the free surface and of the still water level, respectively; 

a sketch of the fluid domain is depicted in the Fig. 1 . The horizontal velocity u is thus (approximately) uniform along 

the water column and the vertical velocity v is chosen so that the fluid incompressibility is valid. Note that the vorticity 

ω = v x − u y ≈ −(y + d) ̄u xx is not exactly zero, meaning that the potential flow is approximated by a rotational velocity field. 

The fact that the irrotationality is violated should not be more surprising than the violation of other relations, such as the 

isobarity of the free surface. 

With the ansatz (1) , the vertical acceleration is 
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where γ is the vertical acceleration at the free surface, i.e., 
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The kinetic and potential energies per water column, respectively K and V , are similarly easily derived 
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2 

2 

+ 

h 

3 ū 
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