
Computers and Fluids 159 (2017) 53–63

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

A numerical investigation of matrix-free implicit time-stepping

methods for large CFD simulations

Arash Sarshar a , ∗, Paul Tranquilli a , Brent Pickering

b , Andrew McCall b , Christopher J. Roy

b ,
Adrian Sandu

a

a Department of Computer Science and Applications, VirginiaTech, United States
b Department of Aerospace and Ocean Engineering, VirginiaTech, United States

a r t i c l e i n f o

Article history:

Received 19 August 2016

Revised 14 September 2017

Accepted 18 September 2017

Available online 20 September 2017

JEL classification:

65L05

65L07

Keywords:

Initial value problems

Computational fluid dynamics

Implicit time integration

a b s t r a c t

This paper is concerned with development and testing of advanced time-stepping methods for large un-

steady CFD problems in the method of lines approach, where the semi-discretization in space is per-

formed first. The performance of several time discretization methods is studied numerically with regards

to computational efficiency, order of accuracy, and stability, as well as the ability to effectively treat stiff

problems. We consider matrix-free implementations, a popular approach for time-stepping methods ap-

plied to large CFD applications due to its adherence to scalable matrix-vector operations and a small

memory footprint. We compare explicit methods with matrix-free implementations of implicit, linearly-

implicit, as well as Rosenbrock–Krylov methods. We show that Rosenbrock–Krylov methods are competi-

tive with existing techniques excelling for a number of problem types and settings.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

While flow problems are inherently unsteady, computer flow

simulations have traditionally focused mainly on steady-state flow

problems because they reduce the computational effort dramati-

cally. Nevertheless, in many practical applications it is important

to quantify the impact of unsteady flow phenomena on the forces

and moments exerted on a body. These phenomena impact perfor-

mance characteristics such as the lift and drag of a body, or the

dynamic response of a control system. Historically, in aircraft de-

sign, these unsteady effects have required additional analyses to

mitigate undesirable aeroelastic effects such as wing flutter and

undesirable stall characteristics, among other issues [1–3] . Some-

times the unsteady effects are beneficial, e.g., when using leading

edge extensions (LEX) to improve high angle of attack performance

[4] . Studies of low Reynolds number unsteady flows have become

much more relevant today with the development of micro air ve-

hicles (MAV) [5–11] , with typical sizes as small as 15 cm. At these

low Reynolds numbers viscous forces dominate the flow character-

istics, leading to unsteady viscous effects such as laminar separa-

∗ Corresponding author.

E-mail addresses: sarshar@vt.edu (A. Sarshar), ptranq@vt.edu (P. Tranquilli),

bpickeri@vt.edu (B. Pickering), mandrew9@vt.edu (A. McCall), cjroy@vt.edu (C.J.

Roy), sandu@cs.vt.edu (A. Sandu).

tion and von Kármán vortices, as commonly demonstrated in the

flow over a cylinder [12] .

The use of CFD allows for preliminary analyses of these de-

signs to determine whether any undesirable unsteady effects will

be present, before committing to the expensive development and

testing of a physical system. However, a major limitation of un-

steady flow analysis using CFD is the prohibitive amount of com-

putational time required to simulate a time-accurate solution with

the time integration schemes commonly used to solve the Navier–

Stokes equations. This coupled set of nonlinear partial differential

equations has to be solved iteratively to determine the solution for

each time step. A fine mesh resolution typically required to capture

the length and time scales of the flow. For making the computa-

tions feasible it is necessary to use a time discretization scheme

that maximizes convergence speed without prohibitively restrict-

ing the time steps due to stability constraints. It is also important

that the time integration scheme provides an accurate solution at

every time step.

Explicit time integration methods have been used for time-

accurate solutions of unsteady flow problems due to their low

computational cost per step and moderate memory requirements.

For example, in [13] a number of embedded high-order explicit

Runge–Kutta methods with minimal memory storage have been

developed for the compressible Navier–Stokes equations based

on van der Houwen’s technique [14] for stage memory storage

http://dx.doi.org/10.1016/j.compfluid.2017.09.014

0045-7930/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.compfluid.2017.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.09.014&domain=pdf
mailto:sarshar@vt.edu
mailto:ptranq@vt.edu
mailto:bpickeri@vt.edu
mailto:mandrew9@vt.edu
mailto:cjroy@vt.edu
mailto:sandu@cs.vt.edu
http://dx.doi.org/10.1016/j.compfluid.2017.09.014

54 A. Sarshar et al. / Computers and Fluids 159 (2017) 53–63

reduction. However, stability constraints restrict the maximum

time steps that explicit methods can employ. Sengupta et al.

[15,16] show that explicit Runge–Kutta methods restricted to small

time-steps can better predict physical instabilities of a flow prob-

lem than multistep Adams–Bashforth methods. Bhaumik et al.

[17] investigate numerical dispersion and phase-shift errors asso-

ciated with Runge–Kutta methods and different spatial discretiza-

tions. These issues are addressed in [18–21] by developing a class

of explicit Runge–Kutta methods that, when coupled with accu-

rate spatial discretization schemes, optimize wave properties in

advection-dominated problems.

Due to their better stability, implicit time-stepping methods can

use very large time steps, however, the computational cost per step

is also greater. The overall computational efficiency of a method is

determined by the trade off between the computational cost per

step and the total number of steps required to carry out the simu-

lation.

The main cost of implicit methods is associated with solv-

ing a large system of nonlinear equations at each step. Newton

type methods for the solution of nonlinear systems are commonly

used in the CFD literature in conjunction with preconditioned

Krylov-based solvers for the inherent linear systems. The popular

Jacobian-free Newton Krylov (JFNK) methods employ finite differ-

ence approximations of the Jacobian-vector products required by

Krylov solvers [22] . Studies of JFNK methods applied to Navier–

Stokes equations [23] have shown that error tolerances of Krylov

space solvers need to be carefully optimized for performance and

accuracy. Interested readers may also refer to [24] for detailed

experiments quantifying the effects of Krylov solver tolerance on

the convergence and efficiency of high order Rosenbrock meth-

ods in CFD applications. Furthermore, development of matrix-free

space-time implicit methods for DG discretizations are reported in

[25–27] .

There is considerable interest in developing numerical schemes

that provide a suitable level of implicitness for time integration

of stiff flow problems, such as to allow relatively large time steps

while keeping the cost per time step comparable to that of explicit

methods.

This paper studies the efficiency of matrix-free time stepping

schemes, applied to ODE systems arising from the method-of-lines

treatment of spatial dependencies in Navier–Stokes equations. In

such cases, DNS approach to flow problems often leads to ODE

systems of very large dimensionality. We examine several prac-

tical aspects of using Jacobian-free methods and their effects on

the computational cost and the accuracy of the solutions. In ad-

dition to standard techniques, we examine a new class of lightly-

implicit time integration schemes, called Rosenbrock–Krylov meth-

ods, which are particularly well suited to employ approximate

Jacobian-vector products.

The remaining part of this paper is structured as follows.

Section 2 reviews numerical methods accessible for the time in-

tegration of large systems of ordinary differential equations. The

numerical methods investigated here and their implementation are

presented in Section 3 . Section 4 applies these methods to a num-

ber of test problems and studies their effectiveness in terms of

their numerical accuracy, stability, and computational efficiency in

case of high dimensional problems. Conclusions and future work

directions are discussed in Section 5 .

2. Numerical time integration for CFD applications

Consider the autonomous initial value problem:

dy

dt
= f (y) , y (t 0) = y 0 , t 0 ≤ t ≤ t F , y (t) ∈ R

N , f : R

N → R

N .

(1)

In this paper Eq. (1) represents the system of ODEs resulting from

the spatial semi-discretization of the Navier–Stokes equations for

flow problems in the method-of-lines framework. The system is

considered autonomous without loss of generality: any system can

be written in autonomous form by appending the time variable to

the solution vector. With only time derivatives remaining in Eq. (1) ,

it is the choice of time-stepping method that determines the sta-

bility, accuracy, and efficiency of the numerical solution as the so-

lution is propagated in time.

We next review several important classes of numerical time in-

tegration algorithms.

2.1. Runge–Kutta methods

The historically well-known time integration schemes at-

tributed to Runge and Kutta are well-studied [28,29] and exten-

sively utilized in flow applications [30,31] . Let y n ≈ y (t n) be a nu-

merical approximation of the solution of the system (1) . An s -stage

Runge–Kutta method(advances the numerical solution to the next

time step t n +1 = t n + h as follows:

k i = f

(

y n + h

s ∑

j=1

a i, j k j

)

, i = 1 , . . . , s ; (2a)

y n +1 = y n + h

s ∑

j=1

b j k j . (2b)

The method coefficients

a = [a i, j] 1 ≤i, j≤s
b = [b i] 1 ≤i ≤s c = [c i] 1 ≤i ≤s ,

are determined such that the method (2a) and (2b) has the desired

accuracy and stability properties [32, II.1] .

Explicit Runge–Kutta (ERK) methods are characterized by co-

efficients a i, j = 0 for any j ≤ i . This means that each stage value

k i (2a) depends only on previously stage vectors k 1 , . . . , k i −1 . This

leads to the convenient result that explicit Runge–Kutta methods

need only one ODE right-hand-side function evaluation per stage,

and no linear or nonlinear systems of equations are solved in the

process. The stability requirements due to CFL conditions limit the

step size h , and therefore impact the efficiency of the method.

Singly diagonally implicit Runge–Kutta methods (SDIRK) [33,

IV.6] are characterized by coefficients a i, j = 0 for any j < i , and

a i,i = γ > 0 for all stages i = 1 , . . . , s . Solving for the stage vector

k i requires the solution of a nonlinear system of equations at each

stage

F i (k i) = k i − f (ξi + hγ k i) = 0 for i = 1 , . . . , s, (3)

which makes the computational cost per step significantly larger

than for ERK. However, this also leads to improved stability prop-

erties and the ability to use much larger time steps. The nonlinear

Eq. (3) is solved using Newton-type iterations:

�k
{ � }
i

= −
(

∂ F i
∂k i

)−1

F i

(
k
{ � }
i

)
, k

{ � +1 }
i

= k
{ � }
i

+ �k
{ � }
i

, � = 0 , 1 , . . .

(4)

where

∂F i
∂k i

= I N − h γ J n , (5)

and J n is the Jacobian of the ODE right-hand-side function:

J n =

∂ f (y)

∂y

∣∣∣∣
y = y n

. (6)

The fact that a i,i = γ for all stages allows re-using the LU de-

composition of (5) in the solution of linear systems appearing in

Eq. (4) for all stage vectors i = 1 , . . . , s .

Download English Version:

https://daneshyari.com/en/article/5011656

Download Persian Version:

https://daneshyari.com/article/5011656

Daneshyari.com

https://daneshyari.com/en/article/5011656
https://daneshyari.com/article/5011656
https://daneshyari.com

