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a b s t r a c t 

This paper is concerned with development and testing of advanced time-stepping methods for large un- 

steady CFD problems in the method of lines approach, where the semi-discretization in space is per- 

formed first. The performance of several time discretization methods is studied numerically with regards 

to computational efficiency, order of accuracy, and stability, as well as the ability to effectively treat stiff

problems. We consider matrix-free implementations, a popular approach for time-stepping methods ap- 

plied to large CFD applications due to its adherence to scalable matrix-vector operations and a small 

memory footprint. We compare explicit methods with matrix-free implementations of implicit, linearly- 

implicit, as well as Rosenbrock–Krylov methods. We show that Rosenbrock–Krylov methods are competi- 

tive with existing techniques excelling for a number of problem types and settings. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

While flow problems are inherently unsteady, computer flow 

simulations have traditionally focused mainly on steady-state flow 

problems because they reduce the computational effort dramati- 

cally. Nevertheless, in many practical applications it is important 

to quantify the impact of unsteady flow phenomena on the forces 

and moments exerted on a body. These phenomena impact perfor- 

mance characteristics such as the lift and drag of a body, or the 

dynamic response of a control system. Historically, in aircraft de- 

sign, these unsteady effects have required additional analyses to 

mitigate undesirable aeroelastic effects such as wing flutter and 

undesirable stall characteristics, among other issues [1–3] . Some- 

times the unsteady effects are beneficial, e.g., when using leading 

edge extensions (LEX) to improve high angle of attack performance 

[4] . Studies of low Reynolds number unsteady flows have become 

much more relevant today with the development of micro air ve- 

hicles (MAV) [5–11] , with typical sizes as small as 15 cm. At these 

low Reynolds numbers viscous forces dominate the flow character- 

istics, leading to unsteady viscous effects such as laminar separa- 
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tion and von Kármán vortices, as commonly demonstrated in the 

flow over a cylinder [12] . 

The use of CFD allows for preliminary analyses of these de- 

signs to determine whether any undesirable unsteady effects will 

be present, before committing to the expensive development and 

testing of a physical system. However, a major limitation of un- 

steady flow analysis using CFD is the prohibitive amount of com- 

putational time required to simulate a time-accurate solution with 

the time integration schemes commonly used to solve the Navier–

Stokes equations. This coupled set of nonlinear partial differential 

equations has to be solved iteratively to determine the solution for 

each time step. A fine mesh resolution typically required to capture 

the length and time scales of the flow. For making the computa- 

tions feasible it is necessary to use a time discretization scheme 

that maximizes convergence speed without prohibitively restrict- 

ing the time steps due to stability constraints. It is also important 

that the time integration scheme provides an accurate solution at 

every time step. 

Explicit time integration methods have been used for time- 

accurate solutions of unsteady flow problems due to their low 

computational cost per step and moderate memory requirements. 

For example, in [13] a number of embedded high-order explicit 

Runge–Kutta methods with minimal memory storage have been 

developed for the compressible Navier–Stokes equations based 

on van der Houwen’s technique [14] for stage memory storage 

http://dx.doi.org/10.1016/j.compfluid.2017.09.014 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2017.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.09.014&domain=pdf
mailto:sarshar@vt.edu
mailto:ptranq@vt.edu
mailto:bpickeri@vt.edu
mailto:mandrew9@vt.edu
mailto:cjroy@vt.edu
mailto:sandu@cs.vt.edu
http://dx.doi.org/10.1016/j.compfluid.2017.09.014


54 A. Sarshar et al. / Computers and Fluids 159 (2017) 53–63 

reduction. However, stability constraints restrict the maximum 

time steps that explicit methods can employ. Sengupta et al. 

[15,16] show that explicit Runge–Kutta methods restricted to small 

time-steps can better predict physical instabilities of a flow prob- 

lem than multistep Adams–Bashforth methods. Bhaumik et al. 

[17] investigate numerical dispersion and phase-shift errors asso- 

ciated with Runge–Kutta methods and different spatial discretiza- 

tions. These issues are addressed in [18–21] by developing a class 

of explicit Runge–Kutta methods that, when coupled with accu- 

rate spatial discretization schemes, optimize wave properties in 

advection-dominated problems. 

Due to their better stability, implicit time-stepping methods can 

use very large time steps, however, the computational cost per step 

is also greater. The overall computational efficiency of a method is 

determined by the trade off between the computational cost per 

step and the total number of steps required to carry out the simu- 

lation. 

The main cost of implicit methods is associated with solv- 

ing a large system of nonlinear equations at each step. Newton 

type methods for the solution of nonlinear systems are commonly 

used in the CFD literature in conjunction with preconditioned 

Krylov-based solvers for the inherent linear systems. The popular 

Jacobian-free Newton Krylov (JFNK) methods employ finite differ- 

ence approximations of the Jacobian-vector products required by 

Krylov solvers [22] . Studies of JFNK methods applied to Navier–

Stokes equations [23] have shown that error tolerances of Krylov 

space solvers need to be carefully optimized for performance and 

accuracy. Interested readers may also refer to [24] for detailed 

experiments quantifying the effects of Krylov solver tolerance on 

the convergence and efficiency of high order Rosenbrock meth- 

ods in CFD applications. Furthermore, development of matrix-free 

space-time implicit methods for DG discretizations are reported in 

[25–27] . 

There is considerable interest in developing numerical schemes 

that provide a suitable level of implicitness for time integration 

of stiff flow problems, such as to allow relatively large time steps 

while keeping the cost per time step comparable to that of explicit 

methods. 

This paper studies the efficiency of matrix-free time stepping 

schemes, applied to ODE systems arising from the method-of-lines 

treatment of spatial dependencies in Navier–Stokes equations. In 

such cases, DNS approach to flow problems often leads to ODE 

systems of very large dimensionality. We examine several prac- 

tical aspects of using Jacobian-free methods and their effects on 

the computational cost and the accuracy of the solutions. In ad- 

dition to standard techniques, we examine a new class of lightly- 

implicit time integration schemes, called Rosenbrock–Krylov meth- 

ods, which are particularly well suited to employ approximate 

Jacobian-vector products. 

The remaining part of this paper is structured as follows. 

Section 2 reviews numerical methods accessible for the time in- 

tegration of large systems of ordinary differential equations. The 

numerical methods investigated here and their implementation are 

presented in Section 3 . Section 4 applies these methods to a num- 

ber of test problems and studies their effectiveness in terms of 

their numerical accuracy, stability, and computational efficiency in 

case of high dimensional problems. Conclusions and future work 

directions are discussed in Section 5 . 

2. Numerical time integration for CFD applications 

Consider the autonomous initial value problem: 

dy 

dt 
= f (y ) , y (t 0 ) = y 0 , t 0 ≤ t ≤ t F , y (t) ∈ R 

N , f : R 

N → R 

N . 

(1) 

In this paper Eq. (1) represents the system of ODEs resulting from 

the spatial semi-discretization of the Navier–Stokes equations for 

flow problems in the method-of-lines framework. The system is 

considered autonomous without loss of generality: any system can 

be written in autonomous form by appending the time variable to 

the solution vector. With only time derivatives remaining in Eq. (1) , 

it is the choice of time-stepping method that determines the sta- 

bility, accuracy, and efficiency of the numerical solution as the so- 

lution is propagated in time. 

We next review several important classes of numerical time in- 

tegration algorithms. 

2.1. Runge–Kutta methods 

The historically well-known time integration schemes at- 

tributed to Runge and Kutta are well-studied [28,29] and exten- 

sively utilized in flow applications [30,31] . Let y n ≈ y ( t n ) be a nu- 

merical approximation of the solution of the system (1) . An s -stage 

Runge–Kutta method(advances the numerical solution to the next 

time step t n +1 = t n + h as follows: 

k i = f 

( 

y n + h 

s ∑ 

j=1 

a i, j k j 

) 

, i = 1 , . . . , s ; (2a) 

y n +1 = y n + h 

s ∑ 

j=1 

b j k j . (2b) 

The method coefficients 

a = [ a i, j ] 1 ≤i, j≤s 
b = [ b i ] 1 ≤i ≤s c = [ c i ] 1 ≤i ≤s , 

are determined such that the method (2a) and (2b) has the desired 

accuracy and stability properties [32, II.1] . 

Explicit Runge–Kutta (ERK) methods are characterized by co- 

efficients a i, j = 0 for any j ≤ i . This means that each stage value 

k i (2a) depends only on previously stage vectors k 1 , . . . , k i −1 . This 

leads to the convenient result that explicit Runge–Kutta methods 

need only one ODE right-hand-side function evaluation per stage, 

and no linear or nonlinear systems of equations are solved in the 

process. The stability requirements due to CFL conditions limit the 

step size h , and therefore impact the efficiency of the method. 

Singly diagonally implicit Runge–Kutta methods (SDIRK) [33, 

IV.6] are characterized by coefficients a i, j = 0 for any j < i , and 

a i,i = γ > 0 for all stages i = 1 , . . . , s . Solving for the stage vector 

k i requires the solution of a nonlinear system of equations at each 

stage 

F i (k i ) = k i − f ( ξi + hγ k i ) = 0 for i = 1 , . . . , s, (3) 

which makes the computational cost per step significantly larger 

than for ERK. However, this also leads to improved stability prop- 

erties and the ability to use much larger time steps. The nonlinear 

Eq. (3) is solved using Newton-type iterations: 

�k 
{ � } 
i 

= −
(

∂ F i 
∂k i 

)−1 

F i 

(
k 
{ � } 
i 

)
, k 

{ � +1 } 
i 

= k 
{ � } 
i 

+ �k 
{ � } 
i 

, � = 0 , 1 , . . . 

(4) 

where 

∂F i 
∂k i 

= I N − h γ J n , (5) 

and J n is the Jacobian of the ODE right-hand-side function: 

J n = 

∂ f (y ) 

∂y 

∣∣∣∣
y = y n 

. (6) 

The fact that a i,i = γ for all stages allows re-using the LU de- 

composition of (5) in the solution of linear systems appearing in 

Eq. (4) for all stage vectors i = 1 , . . . , s . 
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