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a b s t r a c t 

We develop the Edge-Based Reconstruction WENO scheme for solving Euler equations on unstructured 

meshes. It belongs to the class of edge-based schemes with quasi-1D reconstruction of variables. The 

scheme monotonization is provided by using a convex combination of three lower-order reconstructions 

of variables in a similar way as it is in the classical finite-difference WENO scheme. The new scheme 

damps oscillations near shocks on unstructured meshes and, due to its edge-based nature, requires rather 

low computational costs. The properties of the new scheme are demonstrated on several test problems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

When simulating a great part of gas dynamics problems, it is 

crucial to provide a high accuracy of the solution in smooth re- 

gions together with an adequate representation of shock waves 

and other discontinuities. One of the widely used methods for 

solving industry-oriented problems with shocks is the second- 

order Godunov-type MUSCL method, put forward by Kolgan [1,2] , 

see also [3,4] , and van Leer scheme [5] . In this method, nu- 

merical fluxes are determined by solving the Riemann problem 

with respect to the linearly reconstructed physical or conserva- 

tive variables. The reconstruction slope is calculated by applying 

minmod-function to the corresponding upwind and downwind dif- 

ferences. On Cartesian meshes the Kolgan-van Leer scheme allows 

to avoid non-physical oscillations up- and downstream the shock 

front, however it also introduces too much dissipation on smooth 

solutions. 

The Weighed essentially non-oscillatory (WENO) scheme repre- 

sents a more efficient approach which allows combining higher ac- 

curacy for smooth solutions with the correct treatment of shocks. 

In this scheme, the left and right states involved in the Riemann 

problem are found with the use of linear combination of some 

reconstructed values. The weights of the linear combinations are 

estimated basing on the integral characteristics of corresponding 
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interpolation polynomials. The WENO scheme was first designed 

for 1D problems in [6] . The paper [7] introduced new smooth- 

ness monitors and extended the method to the multidimensional 

case. 

In the multidimensional case on Cartesian meshes, there ex- 

ist two implementations of the WENO scheme, namely, finite- 

difference and finite-volume approaches. In the finite-difference 

WENO scheme (FD WENO) which was proposed in [7] the values 

of variables are interpreted as point values in nodes or cell cen- 

ters whereas their derivatives along the coordinate lines are evalu- 

ated independently using the 1D-WENO scheme. This approach is 

cost-efficient since the complexity grows linearly with the problem 

dimension. The finite-volume WENO scheme (FV WENO) assumes 

the definition of data as integral mean values over mesh elements. 

Thus, to calculate the numerical flux through each face of a mesh 

element, one needs to build a multidimensional polynomial. As a 

result, the FV WENO scheme in the nonlinear case becomes sig- 

nificantly more expensive than the FD WENO version. A detailed 

description and comparison of the FD and FV WENO schemes is 

given in [8] . These schemes are also compared in [9] where the 

FD WENO method is called the FV WENO scheme of class A, and 

the polynomial-based FV WENO method – the WENO scheme of 

class B. 

It should be noted that despite the noticeably higher costs of 

the finite-volume approach on a Cartesian mesh in comparison 

with the finite-difference analogue, it offers a straightforward gen- 

eralization to unstructured meshes as it was carried out for smooth 

solutions in [10] . 

http://dx.doi.org/10.1016/j.compfluid.2017.09.004 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2017.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.09.004&domain=pdf
mailto:bahvalov@imamod.ru
mailto:tatiana.kozubskaya@gmail.com
mailto:kozubskaya@imamod.ru
http://dx.doi.org/10.1016/j.compfluid.2017.09.004


P. Bakhvalov, T. Kozubskaya / Computers and Fluids 157 (2017) 312–324 313 

The idea to use weighted combinations of polynomials on un- 

structured meshes similarly as in the WENO scheme was first 

implemented in [11] and [12] , however the full-fledged WENO 

scheme for unstructured meshes was developed in the paper of 

Hu and Shu [13] . In a series of follow-up papers [14–16] , in order 

to improve the efficiency of WENO-scheme implementation on un- 

structured meshes, the authors conducted additional investigations 

of the FV WENO method on multidimensional Cartesian meshes. 

The further developments of ENO and WENO schemes on unstruc- 

tured meshes are represented in the papers [17–23] and some oth- 

ers. In spite of a great number of works on polynomial-based FV 

WENO schemes on unstructured meshes, their high computational 

costs still remain a significant shortcoming. 

The edge-based schemes represent a special class of finite- 

volume methods on unstructured meshes. Their distinctive fea- 

ture is the definition of flow variables as point values rather 

than cell-averages, whereas the flux values are evaluated at the 

edge midpoints only. The edge-based schemes have significantly 

lower computational costs than the multidimensional polynomial- 

based k-exact methods, however within this approach it is not 

possible to build a scheme of arbitrary high order of approxima- 

tion. Among the most known edge-based schemes there are the 

higher-accuracy scheme of T. Barth [24] , the Flux Correction (FC) 

method [25–29] and the Edge-Based Reconstruction (EBR) schemes 

[30–35] which exploit quasi-1D reconstructions of variables. 

In the EBR schemes the edge-based quasi-1D reconstructions of 

variables are built based on the edge vertices and several addi- 

tional points on the edge-based line where the values are calcu- 

lated using linear interpolations on the corresponding intersecting 

faces. The quasi-1D approach was first proposed in [30] where, be- 

sides the edge vertices, the authors use two extra points: one from 

each side of the parent edge. Later on in [31] it was suggested to 

extend the stencils by taking not only these two extra points, but 

also the gradients in the vertices that are involved in the value in- 

terpolations to the additional points. The resulting schemes were 

LV5 and NLV5 in dependence on a type of reconstructured vari- 

ables. The stencil extension improves the dissipative and dispersive 

properties of the method on unstructured meshes. Instead of using 

the gradients, the paper [35] put forward the SEBR5 scheme which 

involves 4 additional points: two from each side of the edge. The 

values in these additional points are found using linear interpola- 

tions. A reduced version of the SEBR5 scheme with 2 additional 

points (one from each side of the edge) is denoted below as the 

EBR3 scheme. 

The quasi-1D reconstructions are built in the way that pro- 

vides the 3rd and 5th order of approximation for EBR3 and SEBR5 

schemes respectively on translationally-invariant (TI) meshes (i.e. 

meshes that are invariant with respect to translation in its each 

edge). Simplicial TI-meshes can be built only by a uniform decom- 

position of parallelograms or parallelepipeds into families of equal 

simplexes. On an arbitrary unstructured mesh the EBR schemes 

are only exact on linear functions (1-exact) and in practice ex- 

hibit the order of accuracy close to second. A high accuracy on 

TI-meshes allows to gain maximum accuracy within the class of 

second-order “unstructured” schemes and within the same scheme 

to combine computations with the close-to-second order of ac- 

curacy on unstructured meshes and high-accuracy simulations on 

structured parts. Numerical results show that the SEBR5 scheme 

provides higher acuracy than the EBR3 scheme, even on unstruc- 

tured meshes [35] , however a further extension of the reconstruc- 

tion stencil (for building, for instance, the SEBR7, SEBR9 schemes) 

practically does not improve the accuracy on unstructured meshes 

and may negatively affect the scheme robustness. Note that all the 

edge-based schemes are compatible, i.e. they can be interchanged 

easilier whenever the mesh quality allows for getting higher accu- 

racy as in the case of TI-meshes. 

For problems with discontinuous solutions on unstructured 

meshes, the very high order methods lose their computational ef- 

ficiency due to rising of computational cost. Moreover, they usu- 

ally do not provide better results than the second-order schemes 

under the existing monotonization techniques. Within this frame- 

work, the usage of EBR schemes, in our opinion, can be especially 

justified. Until recently, however, the potential of these schemes 

has not been investigated to a full degree. 

For solving problems with discontinuities, the quasi-1D edge- 

based approach seamlessly allows to use the limiting techniques. 

Thus, a 4-points stencil defined on the edge-based line provides 

a possibility to implement a higher-accuracy scheme with many 

known limiters such as minmod, superbee and others for calcu- 

lating fluxes at the edge midpoints. The paper [34] considers a us- 

age of limiters to keep non-negative values of density and pressure. 

However, as it is noted above, the use of limiters strongly degrade 

the accuracy in the regions of smooth solutions. To overcome this 

problem, in [32,33] devoted to the schemes with quasi-1D recon- 

structions, the authors suggested to use sensors, however the work 

on the implementation of the resulting schemes and their analysis 

has not been completed. 

To better treat discontinuities on unstructured meshes, the 

present paper considers the development of quasi-1D EBR-WENO 

scheme. For this purpose, 6-points edge-based 1D stencils, which 

are defined within the SEBR5 scheme, are used for calculating 

fluxes at the edge midpoints in a way of combination of three 

different reconstructed values as in the case of the FD WENO5 

method. The EBR-WENO5 scheme can be classified as an edge- 

based extension of finite-difference WENO scheme to unstructured 

meshes. It combines relatively low costs of edge-based methods, 

higher accuracy on smooth solutions and damping of non-physical 

oscillations at discontinuities. We do not consider the EBR-WENO7 

and EBR-WENO9 methods due to the properties of underlying 

SEBR7 and SEBR9 schemes. As for the SEBR schemes, the stencil 

extension does not improve the accuracy on smooth solutions and 

may cause additional problems on discontinuities. 

2. Edge-based schemes 

We begin the description of the edge-based schemes from the 

transport equation 

∂u 

∂t 
+ a · ∇u = 0 (1) 

with constant advection velocity a . 

Edge-based schemes assume a decomposition of computational 

domain into duals (cells, or control volumes) which contain only 

one mesh node. The values of mesh functions are determined in 

the mesh vertices. In a general form the edge-based schemes are 

written as follows 

du i 

dt 
+ 

1 

v i 

∑ 

k ∈ N 1 (i ) 

a · n ik h ik = 0 , (2) 

where N 1 ( i ) – a set of nodes that are connected with vertex i by 

an edge, n ik – oriented square corresponding to edge ik and di- 

rected into the interior of cell j, v i – volume of the cell contain- 

ing node i . In 2D case, these notations are illustrated in Fig. 1 

where n ik = n 

1 
ik 

+ n 

2 
ik 

. The conservation property is provided by the 

identical equations: n ik + n ki = 0 and h ik = h ki . Everywhere in the 

present paper we use barycentric duals (see [36] or [37] ). 

The value h ik at the edge midpoint in formulae (2) is calculated 

taking into account the characteristic direction as 

h ik = h (u ik , u ki ) = 

{
u ik , a · n ik > 0 , 

u ki , a · n ik < 0 , 
= 

{
R ik ({ u } ) , a · n ik > 0 , 

R ki ({ u } ) , a · n ik < 0 . 

(3) 
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