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a b s t r a c t 

The direct numerical simulation of particulate systems offers a unique approach to study the dynamics 

of fluid-solid suspensions by fully resolving the submerged particles and without introducing empirical 

models. For the lattice Boltzmann method, different variants exist to incorporate the fluid-particle inter- 

action into the simulation. This paper provides a detailed and systematic comparison of two different 

methods, namely the momentum exchange method and the partially saturated cells method by Noble 

and Torczynski. We discuss their algorithmic parts in detail, show and propose improvements to the 

commonly applied algorithms, and eventually identify three suitable subvariants of each method. These 

subvariants are used in the benchmark scenario of a single heavy sphere settling in ambient fluid to 

study their respective strengths and weaknesses in accurately reproducing characteristic physical phe- 

nomena for particle Reynolds numbers from 185 up to 365. The sphere must be resolved with at least 24 

computational cells per diameter to achieve velocity errors below 5%. The momentum exchange method 

is found to be more accurate in predicting the streamwise velocity component whereas the partially sat- 

urated cells method is more accurate in the spanwise components. The study reveals that the resolution 

should be chosen with respect to the coupling dynamics, and not only based on the flow properties, to 

avoid large errors in the fluid-particle interaction. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

To study particulate flows, direct numerical simulations (DNS) 

have become a viable and important tool. Resolving the flow struc- 

tures and the submerged particles offers the unique possibility 

to trace the motion of single particles, to evaluate the hydrody- 

namic forces acting on each individual particle, and to investigate 

the flow field in detail. As an alternative to conventional computa- 

tional fluid dynamics (CFD) methods that solve the Navier–Stokes 

equations, the lattice Boltzmann method (LBM) has been applied 

successfully for DNS studies of such particulate systems. Examples 

include coupled simulations of several thousand [1,2] up to mil- 

lions of spherical particles [3,4] as they typically appear in flu- 

idized beds at a laboratory scale. Also non-spherical objects can be 

handled by this method which allows to study flows with blood 

cells [5] , the motion of elongated particles [6,7] and ice floes [8] . 

Extensions exist that incorporate electrostatic forces between the 

particles [9,10] , enable deformable objects [11,12] or model self- 

propelled swimmers [13] . 
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A crucial component of such simulations is the accurate and 

efficient description of the interaction between the solid and the 

fluid phase which requires appropriate coupling methods. Avoiding 

the costly remeshing due to changes in the geometry and topol- 

ogy that are caused by the moving particles is a key aspect here. 

Therefore, classical CFD methods often make use of the immersed 

boundary method to satisfy the no-slip boundary condition on the 

particle surfaces and to compute the hydrodynamic forces acting 

on them [14–16] . The standard LBM employs uniform Cartesian 

meshes with cubic cells and thus it is natural here that coupling 

methods are utilized which do not alter the mesh. This results 

in an excellent parallel performance and scalability of the LBM 

method [17,18] and with suitable data structures also the fluid- 

solid coupling can be implemented with high parallel efficiency 

[4,19] . 

Several different fluid-solid coupling approaches have been pro- 

posed for the LBM: the momentum exchange method [20,21] , the 

partially saturated cells method [22,23] , and methods that rely 

on Lagrangian marker points like the immersed boundary method 

[24–26] or the external boundary force method [11] . Recently, an- 

other method referred to as homogenized LBM has been proposed 
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[27] . Beyond this general classification of the methods, a large 

number of subvariants can be found in literature. 

It is apparent that a rigorous systematic comparison of these 

methods for systems with moving solid particles is needed to as- 

sist the choice for a suitable method. Challenges here are to define 

appropriate benchmark scenarios for which reliable reference data 

exist and to cover the flow regimes at larger Reynolds numbers 

as they are most relevant for typical engineering applications. One 

standard benchmark is to evaluate the drag force acting on an in- 

finite periodic array of spheres in Stokes flow, as e.g. in [28–31] . 

This benchmark can make use of an analytic solution in the form 

of a series expansion [32,33] and is thus particularly suitable to 

validate implementations and investigate certain characteristics of 

the fluid-solid coupling methods as will be demonstrated later on 

in this article. However, the significance of this benchmark is lim- 

ited when the goal is to simulate scenarios with moving particles 

at larger Reynolds numbers since the motion of the particles will 

affect the accuracy and stability of the coupling mechanism. A suit- 

able benchmark has to take into account all possible sources of nu- 

merical errors that might appear in a coupled simulation. Besides 

the fluid simulation itself, errors can be introduced by the particle 

simulation and the coupling from the fluid to the solid phase and 

vice versa. 

Some studies exist that aim at directly comparing different 

fluid-solid coupling methods for LBM but they are mostly re- 

stricted to two-dimensional setups: In [28] , the momentum ex- 

change method with an interpolated bounce back scheme and the 

immersed boundary method are compared with respect to their 

accuracy and efficiency for a laminar flow over a stationary cylin- 

der [34] . The settling of circular and elliptical particles is simulated 

in [35] to establish a comparison between three different LBM 

collision operators in combination with the momentum exchange 

method. Various coupling methods are compared in [36] for two- 

dimensional objects with a prescribed motion and with the focus 

on the accuracy of acoustic properties. In a recent study, sedimen- 

tation of a single circular particle is simulated with different cou- 

pling methods [37] . 

The benchmark proposed by Uhlmann and Dušek [38] features 

a single sphere settling in an ambient fluid in a three-dimensional 

domain. High accuracy results obtained with spectral elements are 

available for flow regimes with particle Reynolds numbers ranging 

from 185 up to 365. This test case can be set up independent of 

the used CFD method and it is well suited to compare different 

methods with respect to their ability to reproduce characteristic 

physical phenomena accurately. Its applicability to LBM has already 

been demonstrated in a preparatory study by [39] . In particular, it 

can be used to evaluate which resolution is required to achieve 

sufficiently accurate results in these flow regimes. In this article, 

we therefore use this benchmark to establish a systematic compar- 

ison between two commonly used coupling approaches with the 

LBM, namely the momentum exchange method and the partially 

saturated cells method. For each method, three distinct subvariants 

are proposed, applied and validated to illustrate their respective 

features and strengths. For the momentum exchange method, the 

simple bounce back and two interpolated versions are compared, 

whereas different solid collision operators are used for the partially 

saturated cells method. Methods that employ Lagrangian markers 

are not included in this study as they are typically more suitable 

for deformable objects in contrast to the rigid particles here. How- 

ever, future work should also investigate those methods to estab- 

lish a complete overview over all available coupling methods. 

The remainder of this paper is structured as follows: First the 

numerical methods are introduced in Section 2 . This includes a 

brief summary of the lattice Boltzmann method in Section 2.1 as 

basis for the momentum exchange method and its variants pre- 

sented in Section 2.2 . The partially saturated cells method with 

its variants is introduced in Section 2.3 . A short validation study 

in Section 3 compares the obtained force on a fixed sphere in 

Stokes flow for the resulting six approaches. Section 4.1 elaborates 

the setup of the benchmark test case from Uhlmann and Dušek. 

The six coupling approaches are then evaluated for four differ- 

ent flow regimes in Sections 4.2 –4.5 . The results are discussed in 

Section 4.6 . Finally, the most important findings are summarized 

in Section 5 . 

2. Numerical method 

2.1. Lattice Boltzmann method 

For the simulation of hydrodynamics, the lattice Boltzmann ap- 

proach [40] with the D3Q19 lattice model [41] is utilized. Having 

its origin in statistical mechanics, the evolution of particle distri- 

bution functions (PDFs) on a Cartesian lattice is computed by solv- 

ing the lattice Boltzmann equation. Each of these PDFs f q , with 

q ∈ { 0 , . . . , 18 } , is associated with a lattice velocity c q . The lat- 

tice Boltzmann equation is usually split into the collision and the 

streaming step. In its most general form, the collision step is given 

by 

˜ f q ( x , t) = f q ( x , t) + C q ( x , t) + F q ( x , t) , (1) 

specified by the collision operator C q and the external forcing op- 

erator F q . In the succeeding stream step, the post collision values 
˜ f q are distributed to the corresponding neighbor lattice cells via 

f q ( x + c q �t , t + �t ) = 

˜ f q ( x , t) . (2) 

The most commonly applied collision model is the BGK model 

[42] that uses a single relaxation parameter to linearly relax the 

PDFs towards their equilibrium values f 
eq 
q . Those can be computed 

as 

f eq 
q (ρ f , U ) = w q 

(
ρ f + ρ0 

(
c q · U 

c 2 s 

+ 

( c q · U ) 2 

2 c 4 s 

− U · U 

2 c 2 s 

))
(3) 

for incompressible flows [43] . The fluid density ρ f = ρ0 + δρ f , 

with the mean density ρ0 and the fluctuation δρ f , and the velocity 

U are cell local quantities and calculated via moments of the PDFs: 

ρ f ( x , t) = 

∑ 

q 

f q ( x , t) , U ( x , t) = 

1 

ρ0 

∑ 

q 

f q ( x , t) c q . (4) 

The lattice weights w q are as given e.g. in [41] and c s is the lattice 

speed of sound. The collision operator for the BGK model is then 

C BGK 
q ( x , t) = 

�t 

τ

(
f eq 
q (ρ f , U ) − f q ( x , t) 

)
. (5) 

It features the relaxation time τ ∈ ( 1 2 , ∞ ) which determines the 

kinematic fluid viscosity ν via 

ν = 

(
τ − �t 

2 

)
c 2 s . (6) 

The forcing operator in Eq. (1) is used to incorporate external 

forces and can be written as 

F q ( x , t) = �tw q 

[
c q − U 

c 2 s 

+ 

c q · U 

c 4 s 

c q 

]
· f 

ext 
, (7) 

with a constant force density f ext [44] . The cell local macroscopic 

velocity u is then obtained via 

u ( x , t) = U ( x , t) + 

�t 

2 ρ0 

f 
ext 

, (8) 

and thus differs from the velocity U , which is used to calculate f 
eq 
q 

and F q in Eqs. (3) and (7) , respectively, by a shift depending on f ext 

[45] . 
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