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a b s t r a c t 

For the simulation of particles in two-phase flows, the diffuse-interface model is frequently employed to 

describe the fluid-fluid interface. The diffuse-interface model can naturally handle moving contact lines 

and topological changes, but the thickness of the interface is in general chosen larger than the physical 

one. We systematically investigated the effect of both the interface thickness and the diffusion of the flu- 

ids on the motion of rigid particles in two-phase flows, using a diffuse-interface model for the fluid-fluid 

interface. A sharp-interface model is considered for the fluid-fluid interface as well, which is expected to 

behave as the limiting case of the interface thickness going to zero. 

The first case that was investigated is a spherical particle in a closed cylindrical container filled with two 

Newtonian fluids, where the particle is moved toward the fluid-fluid interface by a force. The second case 

that was investigated is that of the migration of a rigid particle in a two-phase viscoelastic shear flow. 

The migration of the particle is due a contrast in the viscoelastic properties of the fluids, a phenomenon 

that was not reported before in the literature. For both cases, the results for the diffuse-interface model 

converge to the sharp-interface model when the interface thickness is decreased. However, it is shown 

that both the interface thickness and the diffusion of the fluids play crucial roles in the resulting dynam- 

ics of a particle interacting with a diffuse fluid-fluid interface. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particles at interfaces are important in a large number of indus- 

trial, biological and natural processes. An example is the so-called 

Pickering emulsion, where dispersed droplets of one fluid inside a 

matrix of a second fluid are prevented from coalescence by parti- 

cles at the fluid-fluid interface [1] . A crucial step in manufactur- 

ing Pickering emulsions, is the adsorption of the particles at the 

fluid-fluid interface. Although the problem of a rigid particle in- 

teracting with a fluid-interface has been studied before [2–8] , the 

exact mechanism of particle adsorption and the role of the moving 

contact line remains unclear. 

Modeling offers a valuable tool in the analysis of particles at 

interfaces, but the large range of length scales that needs to be 

resolved is challenging. The macroscopic length scale, the particle 

size and the molecular scale of the fluid-fluid interface should be 

modeled appropriately. The length over which the transition from 

one fluid to the other fluid takes place will be referred to as the in- 
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terface thickness, which is typically of the order of 1 nm for small 

molecular fluids [9] , but can be larger for macromolecular fluids 

and/or at elevated temperatures [10,11] . If the interface thickness 

is small compared to the particle size, a good approximation is to 

regard the interface as an infinitely thin “membrane”. In this clas- 

sical fluid mechanics approach, employed by e.g. Young, Laplace 

and Gauss [12,13] , the effect of the interfacial tension is imposed 

as a boundary condition. We will refer to this model as the sharp- 

interface model. The sharp-interface model, combined with a sharp 

particle boundary, was used in [4–6] to study particles at or close 

to fluid-fluid interfaces. An alternative approach is to assume a dif- 

fuse fluid-fluid interface and a sharp particle boundary [14–17] . A 

third approach is to model both the fluid-fluid interface and the 

particle boundary as diffuse [18] . 

The combination of the diffuse-interface model for the fluid- 

fluid interface and the sharp-interface model for the particle 

boundary circumvents the stress singularity of a sharp interface 

in contact with a solid, which leads to an infinite force needed to 

submerge a floating object [19] . However, the ratio of the inter- 

face thickness to the particle size is often chosen larger than the 

physical value, due to the intractable difference in length-scales 

(the ratio can be as small as 10 −6 for a particle size of 1 mm and 
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interface thickness of 1 nm). In this paper, we present simula- 

tions of non-Brownian particles interacting with fluid-fluid inter- 

faces. The particle boundary is assumed to be sharp, and a diffuse- 

interface model is used for the fluid-fluid interface. A sharp- 

interface model is employed for the fluid-fluid interface as well, 

which is used as a limiting case of the interface thickness going 

to zero. The influence of the interface thickness and diffusion of 

the fluids on the motion and adsorption of the particle is system- 

atically investigated. The analysis is carried out for two cases: (1) 

a particle in a closed cylindrical container containing two Newto- 

nian fluids, and (2) a particle in a two-phase shear flow, where one 

of the fluids is viscoelastic. In the first case, the particle is moved 

toward the interface by a force. In the second case, the particle mi- 

grates toward the interface due to a contrast in viscoelastic proper- 

ties of the fluids, a mechanism for particle migration that was not 

reported before in the literature. 

2. Modeling fluid-fluid interfaces 

2.1. The sharp-interface model 

In the sharp-interface model, the interface is a surface “mem- 

brane”, which will be denoted by A . The coordinates of the inter- 

face, denoted by x , are described using a moving curvilinear coor- 

dinate system [20] : 

x = x̄ ( χ
∼

, t) , (1) 

where χ
∼

= (χ1 , χ2 ) are curvilinear coordinates and x̄ is the time- 

dependent function that maps the curvilinear coordinates on the 

spatial coordinates x . The motion of the interface is described 

through [21] : 

˙ x = 

∂ ̄x 

∂t 

∣∣∣∣
χ
∼

, (2) 

where χ
∼

is kept constant. Using a Lagrangian description of the in- 

terface motion, the interface will be convected by the fluid velocity 

u : 

˙ x = u . (3) 

However, in the sharp-interface model only the convection normal 

to the interface needs to be taken into account [21] : 

˙ x · n = u · n , (4) 

where n is the unit normal vector to the interface. From a com- 

putational point of view, updating only the normal component has 

the advantage that the interface is steady if the motion is purely 

tangential, e.g. a tank-treading droplet in a shear flow [20] . Fur- 

thermore, an arbitrary tangential velocity can be added to the ve- 

locity on the interface, while still satisfying Eq. (4) . A possible use 

of this tangential velocity is to move nodes on the interface, such 

that the elements on the interface are evenly distributed [20,22] . 

However, we will use the tangential velocity to keep the horizontal 

coordinates of the end-points of the interface fixed in the problem 

of a particle in shear flow, as will be explained in Section 5.4 . 

The capillary stress tensor in the sharp-interface model can be 

described by a tension parallel to the interface, which can be writ- 

ten as [23] : 

τsi = σ ( I − n n ) δ(n ) , (5) 

where σ is the (constant) surface tension, I is the unit tensor and 

δ( n ) is the delta function (with unit 1/length) with n the coordi- 

nate perpendicular to the interface. An alternative expression for 

τsi is used in the literature (e.g. [24] ), by taking the deviatoric part 

of τsi as defined in Eq. (5) , and absorbing the isotropic part in the 

pressure, which yields zero stress for spherical drops [25] . 

2.2. The diffuse-interface model 

Cahn and Hilliard [26] hypothesized that the Helmholtz free en- 

ergy density f of a two-phase fluid is a function of the local com- 

position φ and the composition of the immediate surroundings, in- 

cluded through gradients of the composition [27] : 

f (φ, ∇φ) = f 0 (φ) + 

κ

2 

|∇φ| 2 , (6) 

where f 0 ( φ) is a double-well function and κ is the gradient energy 

parameter. In this paper, the double-well function is described by 

f 0 (φ) = −1 

2 

αφ2 + 

1 

4 

βφ4 (7) 

where α and β are constants that can be used to control the shape 

of the double-well function. The free energy of such a system can 

be lowered by a diffusive flux of φ toward areas of lower chem- 

ical potential μ. This leads to the Cahn–Hilliard equation, which 

describes the evolution of φ and is given by: 

D φ

D t 
= ∇ · ( M∇μ) , (8) 

where D( )/D t is the material derivative, M is the constant Cahn–

Hilliard mobility and the chemical potential is given by definition 

as 

μ = 

δ f 

δφ
= −αφ + βφ3 − κ∇ 

2 φ, (9) 

where δ()/ δφ denotes the variational derivative to φ. For a planar 

interface in equilibrium, Eqs. (8) and (9) can be solved analytically, 

which yields the solution [26] : 

φ(x ) = φB tanh 

(
x √ 

2 ξ

)
, (10) 

where φB = 

√ 

α/β is the bulk value of the composition and ξ = √ 

κ/α is the interface thickness. The planar interface in equilibrium 

is endowed with an interfacial energy [13] : 

σ ∗ = 

∫ ∞ 

−∞ 

κ

(
dφ

dx 

)2 

dx = 

2 

√ 

2 

3 

κφ2 
B 

ξ
. (11) 

To determine the Cahn–Hilliard parameters, we first set α = β, 

from which follows φB = ±1 . Then, for desired values of ξ and σ ∗, 

the values of κ and α are chosen such that Eqs. (10) and (11) are 

satisfied. In this paper, we will set the Cahn–Hilliard interfacial en- 

ergy σ ∗ equal to σ , but is important to note that the interfacial 

energy in the diffuse-interface model is in general not constant be- 

cause flow can move the composition profile away from the equi- 

librium profile as given in Eq. (10) . 

Due to the ∇φ terms in the free energy, there will be a contri- 

bution to the stress tensor of the form [28] : 

τdi = κ
(|∇ φ| 2 I − ∇ φ∇ φ

)
, (12) 

where an isotropic term was added to τdi to ensure the capil- 

lary stress is parallel to the interface [29,30] . When ξ approaches 

zero, the diffuse-interface model converges to the sharp-interface 

model [31] . This can be shown for a planar interface ( φ = φ(x ) ) 

in 3D space: the non-zero components of τdi are the yy - and zz - 

component, which are parallel to the interface and are written as 

(τdi ) yy = (τdi ) zz = κ(d φ/d x ) 2 . In the limit of ξ goes to zero, these 

components can be written as: 

κ

(
dφ

dx 

)2 

= 

1 

2 

κφ2 
B 

ξ 2 
sech 

4 

(
x √ 

2 ξ

)
= 

2 

√ 

2 

3 

κφ2 
B 

ξ
δ(x ) = σ ∗δ(x ) . 

(13) 
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