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a b s t r a c t 

We explore the potential of a formulation of the Navier-Stokes equations incorporating a random de- 

scription of the small-scale velocity component. This model, established from a version of the Reynolds 

transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale descrip- 

tion of the flow dynamics in which emerges an anisotropic subgrid tensor, reminiscent to the Reynolds 

stress tensor, together with a drift correction due to an inhomogeneous turbulence. The corresponding 

subgrid model, which depends on the small scales velocity variance, generalizes the Boussinesq eddy vis- 

cosity assumption. However, it is not anymore obtained from an analogy with molecular dissipation but 

ensues rigorously from the random modeling of the flow. This principle allows us to propose several sub- 

grid models defined directly on the resolved flow component. We assess and compare numerically those 

models on a standard Green-Taylor vortex flow at Reynolds numbers Re = 1600, Re = 30 0 0 and Re = 50 0 0. 

The numerical simulations, carried out with an accurate divergence-free scheme, outperform classical 

large-eddies formulations and provides a simple demonstration of the pertinence of the proposed large- 

scale modeling. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The large-scale modeling of fluid flow dynamics remains nowa- 

days a major research issue in fluid mechanics or in geophysics 

despite an enormous research effort since the first investigations 

on the subject 150 years ago [6] . The research themes behind this 

topic cover fundamental issues such as turbulence modeling and 

the analysis of fully developed turbulent flows, but also more ap- 

plicative research problems related to the definition of practical 

numerical methods for the simulation of complex flows. In this 

latter case the difficulty consists in setting up a reliable model- 

ing of the large-scale dynamics in which the contribution of unre- 

solved small-scale processes are explicitly taken into account. For 

the Navier-Stokes equations, the problem is all the more difficult 

that the spatial and temporal scales are tightly interacting together. 

The neglected processes include, among others things, the ac- 

tion of the unresolved motion scales, complex partially-known 

forcing, an incomplete knowledge of the boundary conditions and 

eventual numerical artifacts. Such unresolved processes must be 

properly taken into account to describe accurately the energy 

transfers and to construct stable numerical simulations. In real 
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world situations, the complexity of the involved phenomenon pre- 

vents the use of an accurate – but inescapably expensive – de- 

terministic modeling. We advocate instead the use of a stochastic 

modeling. 

Within this prospect, we aim at describing the missing contri- 

butions through random fields encoding a flow component only in 

a probability distribution sense. Those variables correspond to the 

discrepancies or errors between the dynamical model and the ac- 

tual dynamics. Their modeling is of the utmost importance in geo- 

physics, either for data assimilation or forecasting issues. In both 

cases, an accurate modeling of the flow errors dynamics enables to 

maintain an ensemble of flow configurations with a sufficient but 

also meaningful diversity. 

Small-scale processes are responsible both for an energy dissi- 

pation but also for local backscattering of energy [56] . The intro- 

duction of random variables in the flow dynamics has been con- 

sidered by several authors, as it constitutes an appealing mecha- 

nism for the phenomenological modeling of intermittent processes 

associated to the inverse energy cascade [39,45,65] . Recently those 

models have regained a great interest for the modeling of geophys- 

ical flows [11,27,43,44,67] in climate sciences (see also the thematic 

issue [53] or the review [19] ). 

Numerous turbulence models proposed in the context of Large 

Eddies Simulations (LES) and Reynolds Average Simulations (RANS) 
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introduce de facto an eddy viscosity assumption to model the en- 

ergy dissipation due to unresolved scales [ [15,40,47] , [63] , [68] ]. 

This concept dates back to the work of Boussinesq [6] and Prandtl 

[59] . It relies on the hypothesis that the energy transfer from the 

resolved scales to the subgrid scales can be described in a similar 

way to the molecular viscosity mechanism. It is therefore not at 

all related to any uncertainty or error quantities. In models dealing 

explicitly with a statistical modeling of the turbulent fluctuations 

there is thus some incoherency in representing directly the dissi- 

pative mechanism attached to random terms through an eddy vis- 

cosity assumption. In this work we will not make use of such an 

hypothesis. Instead, we will rely on a general diffusion expression 

that emerges naturally from our formalism. 

This subgrid model is properly derived from a general La- 

grangian stochastic model of the fluid motion in which the fluid 

parcels displacement is decomposed in two components: a smooth 

differentiable (possibly random) function and a random field, un- 

correlated in time but correlated in space. Such a decomposition 

consists in separating or “filtering” a rough velocity in a smooth 

slow time-scale component and a fast oscillating velocity field rep- 

resenting the unresolved flow. Though there is, in general, no sharp 

time-scale separation in turbulent flows, the resolved velocity can 

be interpreted as a temporally coarse-grained component whereas 

the time-uncorrelated component stands for the small time-scale 

unresolved velocity. As a temporal smoothing imposes implicitly a 

spacial smoothing, this separation can be thus interpreted in terms 

of a LES filtering technique. Yet, the corresponding Eulerian for- 

mulation does not ensue from a filtering procedure. It is thus not 

prone to errors associated to the violation of the commutation as- 

sumption between the filter and the spatial derivatives [23,24] . Be- 

sides, those equations introduce an effective advection related to 

the small-scale velocity inhomogeneity. This modified advection, 

empirically introduced in Langevin models of particle dispersion 

[42] , corresponds exactly to a phenomenon, termed turbophoresis , 

related to the migration of inertial particles in regions of lower tur- 

bulent diffusivity [66] . 

The large-scale representation of the Navier-Stokes equations on 

which we rely in this study are built from a stochastic version of 

the Reynolds transport theorem [46] . This modified Reynolds trans- 

port theorem, which constitutes here the cornerstone of our large- 

scale dynamics representation, is presented in the following sec- 

tion. General invariance properties of the corresponding large-scale 

dynamics such as scale and Galilean invariances are detailed in a 

comprehensive appendix. In Section 3 several novel subgrid tensors 

will be devised and compared on a standard Green-Taylor vortex 

flow [70] . We will show that all the proposed schemes outperform 

the usual dynamic Smagorinsky subgrid formulation [21,22,41,68] . 

2. Stochastic modeling of fluid flow dynamics 

Numerous methodological choices can be envisaged to devise 

stochastic representations of the Navier-Stokes equations. The sim- 

plest method considers additional random forcing to the dynam- 

ics. This is the choice that has been the most often performed 

since the work of Benssoussan [3] . Another choice, in the wake of 

Kraichnan’s work [34] , consists in closing the large-scale flow rep- 

resentation in the Fourier space by relying on a Langevin equation 

[30,36,38] . Obviously the frontiers between those two methodolo- 

gies are sometimes fuzzy, and numerous works rely on both strate- 

gies in order to devise the shape that should take the random vari- 

ables evolution law [30,65] . Lagrangian stochastic models based on 

Langevin equations have been also intensively used for turbulent 

dispersion [64] or in probability density function (PDF) modeling 

of turbulent flows [28,58] . Those Lagrangian models, which require 

to model the drift and diffusion functions, lead to very attractive 

particle based representations of complex flows [48,57] . They are 

nevertheless not adapted to global large-scale Eulerian representa- 

tions of the flow dynamics. 

In this work, we will rely on a different framework in spec- 

ifying the stochastic nature of the velocity from the very begin- 

ning as proposed in [29,46] . The basic idea is built on the assump- 

tion that the Lagrangian fluid particles displacement results from a 

smooth velocity component and a highly oscillating stochastic ve- 

locity component uncorrelated in time, 

X t = X t 0 + 

∫ t 

t 0 

w ( X s , s )d s + 

∫ t 

t 0 

σ( X s , s )d B s , (1) 

with the velocity components: 

U ( X t , t) = w ( X t , t) + 

˙ W ( X t , t) . (2) 

In this decomposition the first right-hand term is a smooth func- 

tion of time associated to the large-scale velocity component. 

The second term stands for the small-scale velocity field. It is a 

white noise velocity component defined from the (formal) time- 

derivative of the random field: ˙ W ( X t , t) = σ( X t , t) 
d 
d t 

B 

′ 
t . This ran- 

dom field is a three-dimensional centered Wiener process; it is 

thus uncorrelated in time but can be anisotropic and inhomoge- 

neous in space. Since we focus in this study only on incompressible 

flows, the small-scale component is defined as a divergence-free 

random field; it is hence associated to a divergence-free diffusion 

tensor: 

∇ · σ = 0 . (3) 

Analogously to the standard deterministic case, the derivation pro- 

cedure from the physical conservation laws of the Navier-Stokes 

equations is based primarily on the Reynolds transport theorem 

(RTT). 

2.1. Stochastic reynolds transport theorem 

The RTT provides the expression of the rate of change of a 

scalar function, q , within a material volume, V (t) . For a stochas- 

tic flow (2) with an incompressible small-scale velocity component 

( ∇ · σ = 0 ), this expression derived in [46,60] , is given by: 

d 

∫ 
V(t) 

q d x = 

∫ 
V(t) 

(
d t q + 

[ 
∇ · (q 

(
w − 1 

2 

∇ · a ︸ ︷︷ ︸ ˜ w 

))

− 1 

2 

d ∑ 

i, j=1 

∂ x i (a i j ∂ x j q ) 
] 

d t + ∇ q · σd B 

′ 
t 

)
d x . (4) 

This modified RTT involves the time increment of the random 

scalar quantity q (the differential of q at a fixed point) instead 

of the time derivative. A diffusion operator emerges also naturally. 

For clarity’s sake, this term is designated as “subgrid stress tensor”

following the protocols of large eddies simulation (LES). However, 

its construction is quite different. It is not based on Boussinesq’s 

eddy viscosity assumption nor on any structural turbulence models 

[ [63] ] but arises directly from stochastic calculus rules. It expresses 

the mixing process exerted on the scalar quantity by the fast oscil- 

lating velocity component. This diffusion term is directly related to 

the small-scale component through the variance tensor , a , defined 

from the diagonal of the small-scale velocity covariance: 

a ( x , t ) δ(t − t ′ )d t = E (( σ( x , t )d B 

′ 
t )( σ( x , t ′ )d B 

′ 
t ′ ) 

T ) , 

it can be checked that the variance tensor corresponds to an eddy 

viscosity term (with units in m 

2 s −1 ) . This term plays thus a role 

similar to the eddy viscosity models introduced in classical large 

scale representations [2,20,41,68] or to the spectral vanishing vis- 

cosity [33,54,69] . It is also akin to numerical regularization models 
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