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a b s t r a c t 

Solutions are presented to the problem of steady, axisymmetric flow of an inviscid fluid into a point 

sink. The fluid is of finite depth and has a free surface. Two numerical schemes, a spectral method and 

an integral equation approach, are implemented to confirm results for the maximum-flow-rate steady 

solution for each configuration. The effects of surface tension and sink depth are included and constitute 

the new component of the work. Surface tension has the effect of increasing the maximum flow rate at 

which steady-state solutions can exist. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The problem of steady flow due to a single, motionless sink be- 

neath a free surface has proven deceptively difficult. More accu- 

rately, while it is relatively easy to obtain numerical solutions to 

this problem, the limiting parameters for which steady flows exist 

have proven difficult to find with confidence. While it is generally 

accepted that as the flow rate increases there comes a point be- 

yond which steady solutions no longer exist, this critical value has 

had multiple proposed values in the literature using similar nu- 

merical methods. The current work uses two completely different 

numerical approaches to resolve the critical values at which steady 

solutions cease to exist for the flow into a point sink above a hor- 

izontal base. The agreement of these two different approaches is 

central to the conclusions drawn about the solutions. Surface ten- 

sion is included in the work, both to gauge its influence on the 

flows and for its stabilizing effect on both the flow and the nu- 

merical schemes. 

While the results are of mathematical interest as a fundamen- 

tal study of free surface hydrodynamics, the problem is also rele- 

vant to the withdrawal of fluid from water storage reservoirs and 

other confined water bodies [15,16] . Fluid withdrawn from reser- 

voirs tends to flow in layers due to the density stratification in- 

herent in all reservoirs in temperate climatic zones. This vertical 
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stratification often consists of constant density regions and regions 

with approximately linear density variation due to either tempera- 

ture or salinity. An understanding of the process of selective with- 

drawal is important in delivering suitable water quality for urban 

and agricultural supply. 

Peregrine [20] proposed the analogous problem in two dimen- 

sions (with a line sink) as a study that might assist in understand- 

ing wave-breaking, and while this has proven not to be the case 

for steady flow, some wave breaking behaviour has been observed 

in the unsteady version in which the sink is turned on in a fluid 

at rest [22] . Regardless, the steady problem with a line sink has 

provided some very interesting behaviour and due to the (relative) 

ease of computation and the availability of complex variable meth- 

ods [2,4,8,20,21,25,26] there has been much work on this case. Sur- 

face tension was considered in [4] , and withdrawal in the pres- 

ence of a background flow by Holmes and Hocking [14] . In both 

cases non-uniqueness was found in the solution space. Two kinds 

of steady solution were obtained for flow from a single layer fluid 

with a free surface, one involving a stagnation point on the sur- 

face and another involving a cusp above the sink [21,25,26] . Hock- 

ing [9] and Hocking and Forbes [10] showed that the cusp solu- 

tions correspond to the situation in which the free surface is pulled 

down directly into the sink if the withdrawal rate is increased be- 

yond this value. Thus, if there is another fluid above this layer, this 

flow corresponds to the transition to a two-layer flow in which 

fluid from both layers flow out through the sink. This was found 

to be true in both an unconfined fluid and a fluid of finite depth. 

Numerical calculations of the unsteady flow indicate that this criti- 

cal drawdown flow is related to the maximum steady flow, but the 
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actual drawdown of the interface between two layers occurs at a 

flow rate that depends on the flow history [22–24] . 

This considerable progress in the two dimensional case has not 

really been matched in the problem of flow due to a point sink. 

Such flows were considered experimentally by the authors in Refs. 

[7,17,18] and others, and later in a full simulation by Zhou and 

Graebel [29] and Xue and Yue [28] . Miloh and Tyvand [19] consid- 

ered a small time expansion to look for critical drawdown values. 

No solutions with the equivalent of a cusp shape have been found, 

except over a small range of parameters [6] . 

The first computations of steady solutions for a point sink with 

a stagnation point were performed by Forbes and Hocking [3] and 

Vanden-Broeck and Keller [27] on the case of a semi-infinite fluid. 

These authors solved the same equations but using different nu- 

merical approaches. The problem can be defined in terms of a 

Froude number F S = 

√ 

m 

2 / (gH 

5 
S 
) , where m is the sink strength, g 

is gravitational acceleration and H S is the depth of the sink. While 

the former found a limiting value of F S ≈ 6.4, the latter obtained 

values close to F S = 5 . 4 (with a train of decaying upstream waves) 

using essentially the same integral equation approach. The limiting 

solutions in both cases appeared to have the same physical charac- 

teristic of a stagnation ring on the free surface some small distance 

from the central surface stagnation point. Solutions were computed 

using integral equation techniques pushing the limits of computer 

power of the time. Similar discrepancies in the critical values ap- 

peared when a flow with the sink on a horizontal, impermeable 

base were computed by Hocking et al. [11] (using the numerical 

approach of [27] ) who found F S ≈ 3.24, while [5] obtained a much 

lower value of F S ≈ 1.5 using a fundamental singularity, Galerkin 

technique. The former contained the familiar stagnation ring lim- 

iting solution, but the latter did not. Experiments and full numeri- 

cal simulations in various geometries produced values for limiting 

single layer flows ranging from F S ≈ 1.6 [7] to F S ≈ 3 [29] although 

these may not be directly related to limiting steady-state solutions 

with a central stagnation point. 

A recent, more thorough analysis of the integral equation 

method was given in [12] , and it was shown that the limiting 

steady solutions occur at much lower values of flow rate than ini- 

tial calculations suggest. Surface tension was included in [13] and 

was found to have a regularizing effect on both the solutions and 

the existence space, so that much higher flow rates could be ob- 

tained with significant surface tension included. The “errors” ap- 

pear to be due to inappropriate truncation [3] and lack of conver- 

gence of the numerical scheme as grid spacing was decreased [27] , 

but in both cases this was not obvious with the computational ca- 

pacity available at the time. 

Here we consider the problem with a point sink situated at an 

arbitrary depth in a fluid of finite depth and include the effects of 

surface tension, see Fig. 1 . Two different numerical schemes were 

used and found to give matching solutions for all parameter val- 

ues. Again, the effect of surface tension is to regularize the flow. 

By taking the limit as the surface tension approaches zero we were 

able to confirm the limiting values for zero surface tension. 

2. Problem formulation 

Consider the steady, irrotational, axisymmetric flow of an invis- 

cid, incompressible fluid beneath a free surface. The flow is driven 

by a point sink of strength m situated at a depth H S beneath the 

undisturbed level of the free surface and above a flat impermeable 

boundary at depth D . Under these assumptions the problem can 

be formulated in terms of a velocity potential φ( r, z ), where r is a 

radial coordinate centred on the location of the point sink and z is 

the vertical coordinate with z = 0 corresponding to the level of the 

free surface if there is no flow. Thus the velocity can be obtained 

as ∇φ = (u, w ) , where u is the radial component and w is the ver- 

tical component. The free surface is subject to surface tension, T . 

Nondimensionalising the potential and length with respect to 

( m / D ) and D, respectively, where the quantity m is the strength of 

the point sink, the problem is to solve 

∇ 

2 φ = 0 , −1 < z < η(r) , (r, z) � = (0 , −h S ) , (1) 

subject to the dynamic condition obtained from setting pressure 

to the atmospheric value on the free surface in the Bernoulli equa- 

tion, i.e. 

η + 

F 2 D 

2 

(u 

2 + w 

2 ) −
β
(
rηrr + ηr (1 + η2 

r ) 
)

r[1 + η2 
r ] 

3 / 2 
= 0 on z = η(r) (2) 

with a kinematic condition that no flow can occur through the sur- 

face in steady flow given by 

∇φ · n = φr ηr − φz = 0 on z = η(r) , (3) 

where n is the normal to the free surface, and a condition that 

there can be no flow through the impermeable base beneath the 

layer of fluid, 

φz = 0 on z = −1 . (4) 

These equations include the main parameters that control this 

flow; the Froude number, the sink depth and the surface tension 

F D = 

(
m 

2 

gD 

5 

)1 / 2 

, h S = H S /D, β = 

T 

gD 

2 
(5) 

in which g is gravitational acceleration. In most cases the Froude 

number can be thought of as an effective flow rate. We can define 

a second Froude number that is based on the depth of the sink 

rather than the depth of the fluid as 

F S = 

(
m 

2 

gH 

5 
S 

)1 / 2 

. (6) 

The value of F S is related to F D via the relation F D = h 5 / 2 
S 

F S , where 

h S is the nondimensional sink depth, and is useful for comparison 

with values computed in an unbounded fluid, for which F D → 0 as 

D → ∞ . 

In the limit as we approach the point sink at (r, z) = (0 , −h S ) 

the velocity potential should take the form 

�S → 

1 

4 π
√ 

r 2 + (z + h S ) 2 
(7) 

which corresponds to a total flux into the sink of Q = 4 π . A change 

of sign reverses the flow direction from a sink flow to a source 

flow. However, in the case of steady flow, the quadratic nature of 

the velocity term in the dynamic condition (2) means that steady 

solutions are valid for both a source and a sink. 

3. Rigid-lid solution 

It is of interest to compute a solution that is valid for small 

flow rates that result in a small disturbance to the free surface. 

In essence we can compute the flow due to a point sink confined 

in a horizontal duct. An expansion about the flow along the top 

of the duct is used to approximate the shape of the free surface. 

The linearized problem is thus to solve Laplace’s equation in the 

region −1 < z < 0 subject to the linearized kinematic conditions of 

φz = 0 on z = 0 , −1 . The dynamic condition (2) can then be used 

to estimate the shape of the free surface by expanding about z = 0 . 

Following the usual procedure of allowing φ = φ0 + φ1 + · · · and 
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