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a b s t r a c t 

Numerical simulations were conducted on viscoelastic fluid flows in straight ducts with different cross 

sections, for which the origin of secondary flows and influences of material parameters and flow passage 

geometrical configuration were numerically investigated. The Giesekus constitutive model was chosen to 

describe the viscoelastic fluid with the second normal stress difference N 2 , and solved by embedding 

UDF (User-defined Function) into the CFD (computational fluid dynamics) code FLUENT. The origin of 

such kind of secondary flow was theoretically studied from the perspective of the budget of vorticity 

energy for the first time. Sufficient and necessary condition for the existence of secondary flow was then 

developed in terms of N 2 , the gradient of N 2 and cross-sectional geometry ϑ (i.e., generation term E �). 

Moreover, helicity density was considered as an excellent indicator of secondary flow pattern. Effects of 

material properties (including anisotropic parameter α, solvent viscosity ratio β and relaxation time λ) 

and flow passage geometrical configuration (aspect ratio of cross sections r , the number of polygon sides 

n ) on secondary flow strength and pattern were investigated with E �. Finally, a universal variable σ s was 

proposed to describe non-circularity of cross section, based on which the results for ducts with different 

cross sections can be normalized together. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Viscoelastic fluid, a typical class of Non-Newtonian fluid in 

which viscosity and elasticity coexist, has received considerable 

attention for its wide practical applications in liquid transportation 

through pipes such as petroleum transportation, food production, 

polymer processing and so on. Plenty of experiments have been 

conducted on viscoelastic fluids where many unique and interest- 

ing physical phenomena (e.g., rod-climbing effect, turbulent drag 

reduction [1–6] , Barus effect, unusual particle migration [7] ) have 

been observed comparing with those in Newtonian fluids [8] . In 

general, an apparent difference between the rheological properties 

of viscoelastic and Newtonian fluids lies in the existence of normal 

stress differences, which is responsible for the origin of some 

peculiar flow behavior in viscoelastic fluids. For example, sec- 

ondary flow, which exactly is the focus of this paper, would occur 

when viscoelastic fluid passes through a non-circular straight duct 
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even in laminar regime, whereas no secondary flows occur in 

Newtonian fluid flow. Secondary flow in laminar viscoelastic fluid 

flow and turbulent Newtonian fluid flow share similar patterns 

but with inverse rotational directions [9] . The opposite rotational 

directions can be attributed to distinct extra lateral forces: the 

former is caused by elasticity, while the latter Reynolds stress. 

Referring to the similarity mentioned above, a kind of non-linear 

turbulent Reynolds stress model is inherited by elastic stress of 

viscoelastic fluid [10] . 

So far, there have been numerous researches concerning how 

the elasticity contributes to the existence of laminar secondary 

flow of viscoelastic fluid when passing through a non-circular 

straight duct. Ericksen [11] firstly mentioned that only when the 

cross section is circular or the apparent viscosity and normal stress 

functions satisfy certain relationships, would no secondary flow 

occur in steady flow of Reiner-Rivlin fluid through a straight duct. 

Then, Oldroyd [12] indicated the second normal stress difference 

( N 2 ) was tied with the generation of secondary flow in laminar 

viscoelastic fluid flow. He pointed out that steady rectilinear flow 

of viscoelastic fluid would occur if any of the following three 

conditions are met: (1) N 2 is zero; (2) both apparent viscosity and 
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normal stress difference coefficient are constant or (3) these two 

are in proportional relationship. In this manner, a non-zero N 2 is 

only a necessary but not sufficient condition for the presence of 

secondary flow. Experiments of viscoelastic fluid with obviously 

non-zero N 2 were then successively conducted in straight ducts 

with various cross sections [13–17] . Dodson [13] adopted two kinds 

of viscoelastic fluids (aqueous solution of polyacrylamide and a 

soap solution with higher elasticity) and visualized secondary 

flows in the square and rectangular ducts through an injected dye 

thread. This work provided valid experimental support of the con- 

tribution of normal stress differences to secondary flow. Townsend 

et al. [14] tested six different viscoelastic fluid flow systems with 

different values of N 2 , and concluded that the direction of the 

streamlines could not be indicated by the sign of N 2 . This work 

theoretically demonstrated that the origin of secondary flow was 

related to the third derivative of N 2 . Speziale [18] and Huang and 

Rajagopal [19] deduced that if there exists secondary flow, non- 

zero S yy − S xx or non-zero S xy ( S is extra stress tensor) is necessary. 

Their works indicated the certain frame-indifferent convected time 

rates gave rise to secondary flow, rather than specific viscoelastic 

fluid models. Moreover, Holmes et al. [20] modeled transient and 

steady viscoelastic secondary flows via OpenFOAM with multi- 

mode Giesekus and PPT models and the multimode Giesekus 

model was accurate to capture secondary flow behavior. Therefore, 

the capture of the viscoelastic secondary flow requires non-linear 

viscoelastic fluid models with strain rate history independent of 

coordinate systems and non-zero N 2 instead of those with zero 

N 2 (upper-convected Maxwell (UCM) [21] , Oldroyd-B [22] and 

simplified Phan-Thien-Tanner (SPTT) [23,24] models). Meanwhile, 

it is also necessary to pay attention to the effects of different 

parameters in various viscoelastic fluid models [25–27] . Gao and 

Harnett [25] performed a numerical study on the secondary flow 

of a Reiner-Rivlin fluid in laminar regime through ducts with 

square and rectangular cross sections, and studied the influences 

of N 2 , Reynolds number ( Re ) and aspect ratio on the magnitude 

of secondary flow. Xue et al. [26] investigated the secondary flow 

patterns in square and rectangular cross sections by adopting mod- 

ified Phan-Thien-Tanner (MPTT) constitutive model with non-zero 

N 2 . It was found that material parameters had dramatic influence 

on secondary flow strength instead of secondary flow pattern. Yue 

et al. [27] investigated secondary flow of Giesekus viscoelastic fluid 

in a non-circular duct, and developed two conditions for the exis- 

tence of secondary flow: (1) non-linear dependence of N 2 on shear 

viscosity and (2) non-axisymmetric cross section geometry. They 

concluded that secondary flow was caused by non-conservative 

“body force” arising from N 2 , but not from N 2 directly. Letelier 

and his colleagues [28,29,30] proposed two causes responsible 

for secondary flow of viscoelastic fluid in straight ducts: the 

non-circular cross section and the non-conservative body force. 

With the aforementioned works, there still lacks thorough theories 

explaining the mechanism of secondary flow in pressure-driven 

laminar viscoelastic fluid flow through straight ducts with non- 

circular cross sections so far. Both non-linear material behavior 

and geometrical confinement bring about the difficulty in clari- 

fying the origin of secondary flow. It is necessary to find other 

feasible ways to explain the origin of secondary flow from other 

perspectives (e.g., vorticity), which will be conducted in this paper. 

In order to establish the database for the secondary flow, nu- 

merical simulations of viscoelastic fluid flow were carried out by 

commercial computational fluid dynamics (CFD) software ANSYS 

FLUENT, which can provide mature, reliable, and robust numerical 

algorithms. However, there is no constitutive model for viscoelastic 

fluid in this CFD code. The functionalization of user-defined func- 

tion (UDF) provided by the FLUENT package makes it achievable 

to embed user-defined scalar (UDS) equations and source terms 

of governing equations into the calculations. Our previous work 

[31] has implemented finitely extensive nonlinear elastic-Peterlin 

(FENE-P) constitutive model into FLUENT by utilizing UDF, and 

successfully realized the simulation on two-dimensional laminar 

viscoelastic fluid flow through symmetric planar sudden expan- 

sion geometry, which establishes the foundation of the present 

research. In addition to FENE-P model, the present paper further 

implements Giesekus model to FLUENT through UDF. 

The present paper aims at investigating the mechanism of sec- 

ondary flow from some new perspectives and the effects of several 

factors including material parameters and geometrical configura- 

tion. Numerical simulations are performed on laminar viscoelastic 

fluid flows through straight ducts with different cross sections. 

As an extension of our previous work [31] , Giesekus constitutive 

model is embedded into FLUENT by UDF to describe viscoelastic 

fluid behavior with non-vanishing N 2 . The rest paper is organized 

as follows: Section 2 introduces the numerical method including 

computational model, governing equations, UDF-related knowledge 

and mesh independence; Section 3 validates UDF and analyzes 

the numerical results, including the origin of secondary flow and 

effects of material properties and geometrical configuration on 

secondary flow; finally, main conclusions are drawn in Section 4 . 

2. Numerical methods 

2.1. Computational model 

The system considered in this work consists of a straight duct 

with viscoelastic fluids passing through. The schematic diagrams 

of the systems are shown in Fig. 1 . The origin of a Cartesian 

reference frame is set at the center of the inlet. The main flow is 

along the x -axis. 

2.2. Governing equations 

The flow considered is three dimensional, incompressible, 

fully-developed, laminar, and isothermal. Hence, the continuity 

and the momentum equations read as 

∂ u i 

∂ x i 
= 0 , (1) 

ρu j 

∂ u i 

∂ x j 
= − ∂ p 

∂ x i 
+ 

∂ τi j 

∂ x j 
, (2) 

where u i and x i correspond to velocity components and coordi- 

nates, respectively, and subscript i = 1, 2, 3 for x, y, z. ρ is the den- 

sity and set as 1 × 10 3 kg/m 

3 , p is the pressure and τ ij is the stress 

tensor component. For viscoelastic fluid flow, τ ij is presented as, 

τi j = τ p 
i j 
+ τ s 

i j , (3) 

where τ s 
i j 

is the stress tensor induced by solvent viscosity and τ p 
i j 

is the elastic stress tensor, the constitutive equations for the stress 

tensors are 

τ s 
i j = μs 

(
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 

)
, (4) 

τ p 
i j 

= 

μp 

λ

[
f ( r ) C i j − δi j 

]
, (5) 

respectively. Herein, μs is the solvent viscosity and set as 

1 × 10 −3 Pa · s, and μp is the viscosity of polymer or surfac- 

tant solute. λ is the relaxation time, δij is Kroneker symbol, f ( r ) 

is the Peterlin function and f (r) = 1 for Giesekus model. C ij is 

the conformation tensor component of polymer molecules or 

surfactant micelles, and its transport equation presents as 
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