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The capability of a homogeneous model to simulate steady and unsteady two-phase flows is investigated.
The latter is based on the Euler set of equations supplemented by a complex equation of state describing
the thermodynamical behavior of the mixture. No equilibrium assumption is made except for the kine-
matic equilibrium. The return to the thermodynamical equilibrium is ensured by three source terms that
comply with the second law of thermodynamics. The numerical code built on the basis of this model
has been verified and some validation results are discussed here. The speed of propagation of a pressure
signal is first studied and compared with experimental measurements. Then a more complex situation
is investigated: SUPERCANON experiment which corresponds to a sudden depressurization of heated wa-
ter (associated to a Loss Of Coolant Accident, or LOCA). At last, the results of a numerical experiment of
heating of flowing water in a pipe are compared to those obtained with an industrial code.
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1. Introduction

When two different phases of the same component coexist in a
stable manner, the thermodynamical theory states that their tem-
peratures, pressures and chemical potentials must be equal [1].
Conversely, when the equilibrium between the two phases is not
yet reached, these temperatures, pressures and chemical poten-
tials may differ. Most of the models that are used to perform two-
phase flow simulations involving mass transfer are based on one or
more equilibrium assumptions. This can be restrictive when deal-
ing with highly unsteady flows for which these assumptions may
not be relevant. The homogeneous model used in the present work
[2-5] only makes the assumption that the velocities of the two
phases are equal and the full thermodynamical disequilibrium is
accounted for. This hypothesis of equal velocities can show some
limitations - for instance when gravity plays an important role, or
when simulating jets, etc... — but it remains acceptable for a lot
of industrial applications with forced convection in pipes, as those
encountered for nuclear power plants. One can note that some
two-fluid models are developed without equilibrium assumptions;
for instance those in [6-12] which are based on the Baer-Nunziato
model [13], or in [14]. It should also be mentioned that homoge-
neous models have been studied with different velocities for the
two phases [15].

E-mail address: olivier.hurisse@edf.fr

http://dx.doi.org/10.1016/j.compfluid.2017.04.007
0045-7930/© 2017 Elsevier Ltd. All rights reserved.

The homogeneous model in the present work was first pro-
posed in [2]. It is built on the Euler set of equations supple-
mented by three fractions which allow to account for the temper-
ature, pressure and chemical potential disequilibria between the
two phases. The return to equilibrium is then ensured by three
source terms which are defined in order to fulfill the second law of
thermodynamics. The resulting model possesses a complex Equa-
tion Of State (EOS) for the mixture and is hyperbolic provided that
each phasic entropy is concave with respect to the phasic spe-
cific volume and to the phasic specific internal energy, and that
the mixture temperature is positive [4]. Moreover, the transition
between single-phase flow and two-phase flow is managed quite
naturally. This is a crucial feature since a lot of industrial situations
involve such transitions.

Among other transient phenomena involving two-phase flows
in confined or pressurized devices, one may for instance cite: wa-
ter hammers [16,17], Boiling Liquid Expanding Vapor Explosion
(BLEVE) [18,19], breaches in pressurized pipes, erosion due to the
collapse of cavitation bubbles [20], etc.... In such situations, pres-
sure waves are produced that may damage the installation. Hence,
the prediction of the propagation of such waves is important for
safety studies. It is well-known that the propagation of pressure
waves in two-phase flows strongly depends on the gas fraction
[21]. Roughly speaking, the speed of sound in a medium depends
on the ratio of its specific volume to its compressibility. In a homo-
geneous mixture of liquid and gas, the compressibility is close to
the compressibility of the gas, whereas the specific volume is close
to the specific volume of the liquid. As a consequence, the sound
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of speed will be lower than that in the pure phases [22]. This
behavior has been investigated with experimental measurements
for liquid-gas mixtures (without mass transfer). The aim of the
present paper is to evaluate the capability of a code to reproduce
some schematic situation encountered in nuclear applications. We
first compare the speed of propagation of a pressure pulse for dif-
ferent air-water mixture fractions to the measurements of [21]. A
more complex situation of depressurization of heated water is also
investigated. In the latter, waves are generated by the sudden de-
pressurization and travel in both the pure liquid and in the steam-
water mixture. We also investigate the case of the heating of water
flowing in a pipe.

The whole code that is used in this study possesses very few
physical parameters, and the time-scale associated to the return to
the thermodynamical equilibrium is the most tricky to determine.
This time-scale should be chosen on the basis of physical phenom-
ena but this is a difficult task and very few work are available on
that subject when considering a complete two-phase flow model
[23,24].

The schemes that provide the unsteady numerical approxima-
tions are described in [4,25]. An important verification process has
been done and it has been reported in [4,25]. In these references,
the verification test cases have been chosen to mimic the main sit-
uations encountered in the nuclear domain. Two kinds of problems
have thus been studied: Riemann problems which are classical un-
steady test problems, and a steady-state problem involving the
heating of a two-phase mixture. The former (resp. latter) are rep-
resentative problems of the situation induced by the experiment
proposed in Section 6 (resp. 5). The case of Section 5 corresponds
to the computation of a steady-state. In order to obtain accurate
approximations with little CPU-time, we propose in Section 3 a
steady-state algorithm based on the idea of [26].

An overview of the model and the numerical schemes is first
proposed in Sections 2 and 3. In Section 4, we assess the compu-
tation of the propagation of a pressure-pulse by our code. This is
done on the basis of the measurements of the speed of propaga-
tion of a pressure-pulse in air-water reported in [21]. Section 5 is
then devoted to the study of a case of heating of water in a pipe
involving small pressure variations. This case is inspired from the
work [27,28]. It is schematic of the steam production in a steam
generator of a Pressurized Water Reactor (PWR) and we compare
results obtained by the model to the results obtained with an in-
dustrial code. We then focus in Section 6 on a more complex sit-
uation: the SUPERCANON [29] experiment, which could be assimi-
lated to a two-phase shock-tube with mass transfer. These experi-
ments were conducted in the late 70s on this experimental facility
to measure the depressurization of heated water. They were de-
signed to be representative a of a Loss Of Coolant Accident (LOCA)
in the primary circuit of a PWR nuclear power plant, as the Ed-
wards’pipe blowdown experiments [30].

2. A homogeneous model for two-phase flows

The aim of this section is to provide a quick overview of the
model and of the numerical schemes. For a more detailed presen-
tation, the reader could refer to [2,4,5] for the model, to [4] for the
numerical schemes and to [4,25] for the verification process. In the
following, a subscript v will denote a vapor or gas quantity, and a
subscript [ a liquid one.

The quantities describing the mixture of the two phases are:
the specific volume t = 1/p where p is the density, U is the ve-
locity and e is the specific internal energy. The three fractions de-
fine the way the two phases are mixed in terms of: the volume
through the vapor volumic fraction oy, the mass through the vapor
mass fraction y, and the energy through the vapor energy-fraction
zy. In fact these fractions allow to express the phasic quantities in

terms of the mixture quantities:
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where oy =1 -y, ¥y, =1-yy and z; = 1 — z,. The set of equations
for the homogeneous model is then:
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where Y = (ay, yv, zy), and where E stands for the specific total en-
ergy:
E=e+U?/2.

The thermodynamical closure of the system is ensured by the def-
inition of the mixture entropy:

s = YuSu(Tv, €) +Y151(T1, €1), (3)
where the phasic entropies s,(7}, e,) must be specified by the user.
The phasic pressures P, and the phasic temperatures T, are de-
duced from the phasic entropies through the phasic Gibbs relations
deSk = dek + Pkd'L'k, (4)

which lead to the definitions:
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The pressure law P and the temperature law T for the mixture are
obtained by writing the Gibbs relation (6) for the mixture, which
involves the mixture entropy (3):

as as
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We then have the definitions:
1 d P d
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for the pressure and the temperature of the mixture. Using the
phasic pressure P, and temperature T, they can be written:
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The three source terms I'y (one for each fraction) rule the ther-
modynamical exchange between the phases and allow the system
to return to the thermodynamical equilibrium. Hence they must be
chosen to comply with the second principle of thermodynamics.
They are written here as in [2,4]:

(9)

where A is a characteristic time-scale, and

Yeq = (Qveq. Yv.eq: Zv,eq) (10)

defines the equilibrium fractions. This equilibrium state Ye; max-
imizes the specific entropy of the mixture s for a given specific
internal energy e and a given specific volume 7. When the two
phases coexist Yeq belongs to ]0, 1[3 and the derivative of the en-
tropy with respect to the mixture fractions Y is then null. A simple
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