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a b s t r a c t 

In this study, we present lattice Boltzmann simulations of two-phase immiscible displacements driven by 

constant pressure differentials. The method to implement the pressure boundary condition is based on 

bounce-back of the total non-equilibrium distribution. Simulations show that phase and pressure distri- 

butions are consistent with the imposed pressure boundaries. The accuracy was verified by simulating 

flows in a capillary tube, a problem with a moving interface for which an analytical solution is available. 

Following the verification, we simulated two-phase immiscible displacements in a random sphere pack- 

ing and characterized the effects of capillary number, viscosity ratio, and wettability on the dynamics of 

displacement and the relative permeability. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Direct numerical simulation of multiphase flows through 

porous media is an important approach to obtain fundamental un- 

derstanding of this complex problem central to many natural and 

engineering processes [1–5] . By directly solving the dynamics of 

fluid motion in the pore space, the effects of density, viscosity, cap- 

illarity, gravity, and pore geometry on multiphase flows can be di- 

rectly evaluated. 

Numerical methods developed to directly solve multiphase 

flows in porous media include the phase field (PF) method [6–

9] , the volume-of-fluid (VOF) method [10–13] , the level-set (LS) 

method [14–17] , the density functional method (DFM) [18] and the 

lattice Boltzmann (LB) method [19–27] . In the PF method, the in- 

terface is described as a transition layer where unstable mixtures 

are stabilized by non-local energy terms. This interface layer, how- 

ever, must be thin compared to other hydrodynamic length scales 

to ensure accuracy [8] . The VOF method, as its name implies, tracks 

the volume of each fluid in cells that belong to the interface [13] . 

The VOF algorithms consist of three parts: interface reconstruction, 

advection and surface tension. The LS method defines the inter- 

face by a level-set function [14] and has been widely used due to 

its simplicity [16] . Re-initialization techniques can be employed to 

overcome interface smearing and enforce mass conservation [17] . 

For porous media flows, capillary forces often dominate over vis- 

cous forces, and both VOF and LS methods face challenges [28] . In 
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LB methods, phase segregation is modeled by inter-particle inter- 

actions and interface tracking is not always needed [29,30] . Similar 

to PF, in LB methods interfaces are diffuse and high computational 

cost is usually needed to reduce the effect of a finite interface 

thickness on multiphase hydrodynamics. Owning to LB methods’ 

simplicity and high computational efficiency [31] , they are widely 

used in direct simulation of multiphase flows [32–38] . 

Several multiphase LB models have been developed for simu- 

lation of multiphase flows, such as the color gradient model [19–

21,31] , the pseudo-potential model [22,23] , the free energy model 

[24] and the mean-field model [29] . The color gradient model 

uses the local gradient in the phase field to separate the phases. 

Although early color gradient model was criticized to be time- 

consuming and high spurious velocities can occur near the inter- 

face [39] , a benefit of the color gradient model is that interfacial 

tension, contact angle, viscosity ratio and density ratio can be ad- 

justed separately [40] and in a wide range. The pseudo-potential 

model introduces a pseudopotential to account for particle inter- 

actions and has been widely employed due to its conceptual sim- 

plicity and computational efficiency [37] . In the pseudo-potential 

model, however, interfacial tension, density ratio and viscosity ra- 

tio cannot be adjusted independently. The free energy model im- 

poses a non-ideal pressure tensor on the equilibrium distribution 

function. This model is thermodynamically consistent and con- 

serves local mass and momentum [24] . The original free energy 

approach lacks Galilean invariance for the viscous term in the 

Navier–Stocks equation and efforts have been made to propose a 

Galilean invariant model [41,42] . In the literature, comparisons of 

the above three multiphase LB models have been carried out and 
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it was shown that the color gradient model and the free energy 

model have similar capabilities [43,44] and are superior to the 

pseudopotential model. The mean-field model proposed by He et 

al. [29] incorporates molecular interaction forces to model the in- 

terfacial dynamics and is more flexible for implementation of ther- 

modynamic models [45] . 

As with other computational methods, boundary conditions are 

important for LB simulations. With properly implemented bound- 

ary conditions, one can drive and control flows for better simula- 

tion of real flows. For single-phase flows, both pressure and veloc- 

ity boundary conditions have been developed [46–49] . Maier et al. 

[46] proposed an extrapolation scheme for the distribution func- 

tion that achieved fixed pressures at inlet and outlet boundaries. 

Zou and He [47] built another pressure and velocity boundary con- 

dition by applying a bounce-back rule to the non-equilibrium dis- 

tributions on the boundary nodes. Zero transverse velocities were 

assumed at inlet and outlet. Zhang and Kwok [48] proposed a 

modified periodic boundary condition to incorporate pressure dif- 

ference for fully developed flows. Their model preserved system 

periodicity and no unphysical inlet/outlet flow disturbance was ob- 

served. Later, Kim and Pitsch [49] examined a boundary closure 

scheme for both compressible and incompressible flows that shows 

a higher accuracy than Zhang and Kwok’s work. 

For multiphase LB methods, schemes to recover pressure or ve- 

locity boundary conditions are more involved than for single-phase 

LB, because constraints need to be set on the total particle veloc- 

ity distributions that are related to the prescribed hydrodynamic 

conditions. The velocity distributions of individual components at 

the boundary need to be reconstructed carefully to avoid overly 

or inadequately defining the degree of freedom of the system. In 

the class of open flow boundary problems, pressure or velocity or 

both are specified at the inlet, and the outlet is set free. McCracken 

and Abraham [50] simulated such multiphase flows in the context 

of gas-gas mixing layers, using extrapolation boundary conditions. 

Dong et al. [51] simulated displacements in a channel using a ve- 

locity inlet and a free-flow boundary condition at the outlet. Lou 

et al. [52] specified velocity at the inlet and studied systematically 

the performance of extrapolation, Neumann, and convective out- 

flow boundaries. In the class of rate-driven multiphase flows, veloc- 

ity is specified at the inlet, and pressure is specified at the outlet. 

Huang et al. [53] conducted a study of immiscible displacement 

using a velocity boundary condition for the invading fluid at the 

inlet and a constant-pressure boundary condition for the defend- 

ing fluid at the outlet based on the non-equilibrium bounce back 

assumption. The pressure of the defending fluid at the inlet and 

that of the invading fluid at the outlet were forced to be zero. The 

limitation of this implementation is that the constraints were im- 

posed on distributions of individual components and not the total 

pressure. Later, Liu et al. [54] correctly simulated liquid CO 2 dis- 

placement of water with a constant flow rate imposed at the inlet 

and a constant pressure specified at the outlet. 

In pressure-driven multiphase flows, pressures are specified at 

both inlet and outlet boundaries. Velocity and phase distribution, 

on the other hand, are allowed to freely evolve. For such flows 

there has not been a focused LB study. In some LB studies, a uni- 

form body force was used to replace a pressure difference. How- 

ever, even for single-phase flows it is known that pressure bound- 

aries cannot always be replaced by a body force [48,55] . 

In this work, we incorporated a two-phase extension of Zou 

and He’s non-equilibrium bounce-back method [47] into a LB mul- 

tiphase flow simulator that uses a color gradient model with 

Multi-Relaxation-Time (MRT) collisions. By bouncing back the non- 

equilibrium part of the total distribution, the total pressure at the 

boundaries can be set. The fractions of the two fluids at the inlet 

and the outlet, as well as the velocities at the inlet and the outlet, 

are not constrained. We simulated several cases of pressure-driven 

multiphase flows, including flows through a porous medium where 

we extracted pressure and saturation profiles and relative perme- 

ability for comparison and discussion. 

The materials in this article are organized as follow. In Section 

2 , we briefly cover the two-phase color gradient lattice Boltzmann 

method used in this study. In Section 3 , we present details of the 

pressure boundary condition. In Section 4 , we first examine the 

phase distributions and pressure fields of two-phase flows driven 

by the pressure boundary condition. Then, the accuracy of the 

method is tested by simulations of displacements in a capillary 

tube. In the end, simulations of displacements with different cap- 

illary numbers, viscosity ratios, and wettability through a sphere 

packing are presented and analyzed. The density ratio was kept at 

unity in all simulations. 

2. Two phase lattice Boltzmann method 

In this study, we used a three-dimensional color gradient mul- 

tiphase LB model with MRT collision. As MRT-color-gradient mod- 

els have already been presented in detail in several references, e.g. 

[53] , here we only provide a brief description. In the color gradient 

LB model, multiphase hydrodynamics is recovered from the evo- 

lution of two discrete velocity distribution functions f k 
i 

that rep- 

resents the fraction of fluid particles of type k moving with lat- 

tice velocity c i . As with most color gradient models, we assigned 

values of R and B to k to represent red and blue components in 

the binary mixture, respectively. The lattice velocity c i follow the 

three-dimensional 19-velocity (D3Q19) model 

c i = 

⎧ ⎨ 

⎩ 

( 0 , 0 , 0 ) i = 1 

( ±1 , 0 , 0 ) , ( 0 , ±1 , 0 ) , ( 0 , 0 , ±1 ) i = 2 ∼ 7 

( ±1 , ±1 , 0 ) , ( ±1 , 0 , ±1 ) , ( 0 , ±1 , ±1 ) i = 8 ∼ 19 

(1) 

Density ρk and hydrodynamic velocity u are calculated from the 

distribution functions using: 

ρk = 

∑ 

i 

f k i (2) 

ρu = 

∑ 

i 

∑ 

k 

f k i c i (3) 

ρ = ρR + ρB is the total density. 

In each time step, distribution functions f k 
i 

are updated by col- 

lision and propagation 

f k i ( x + c i �t, t + �t ) = f k i ( x , t ) + �k 
i ( x , t ) (4) 

f k 
i 
( x , t ) is the distribution function at position x and time t and 

�t = 1 is the time step. �k 
i 

is the collision operator. For the color 

gradient model, �k 
i 

includes three parts [56] : 

�k 
i = 

(
�k 

i 

)3 
[ (

�k 
i 

)1 + 

(
�k 

i 

)2 
] 

(5) 

( �k 
i 
) 1 is the single-component collision operator that simulates 

viscous relaxation of stress within the binary mixture, ( �k 
i 
) 2 is the 

inter-component collision operator that provides a means to sim- 

ulate interfacial tension, and ( �k 
i 
) 3 is the recoloring operator that 

forces the separation of the two components. 

In this study, we only considered components of equal densi- 

ties, and adopted MRT collision due to its superiority over BGK 

in numerical instability [57] , suppression of spurious velocities 

[58,59] and minimization of the viscosity-dependence of perme- 

ability [35] . When two components have equal densities, it is 

not necessary to perform separate single-component and inter- 

component collisions [53,54] . The total distribution function f i = 

f R 
i 

+ f B 
i 

was instead used in the single-component and inter- 

component collisions. It should be mentioned here that the MRT- 

color-gradient procedures presented in this section only apply to 
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