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a b s t r a c t 

The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast 

inertia-gravity oscillations have long been considered an impediment to initialization of weather fore- 

casts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized. 

It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations 

are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby 

number is crossed, in contradistinction with fast oscillations emerging according to an exponential small- 

ness scenario such as reported in previous studies, including some others by Lorenz. The consequences 

of this dynamical transition on the closure problem based on slow variables is also discussed. In that 

respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This 

framework allows for a unification of previous concepts such as the slow manifold or other concepts of 

“fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the 

averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through de- 

tailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear 

Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the 

emergence of fast and energetic oscillations. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The concept of a “slow manifold” was presented in a didactic 

paper by Leith [37] in an attempt to filter out, on an analytical 

basis, the fast gravity waves for the initialization of the Primitive 

Equations (PE) of the atmosphere. The motivation was that small 

errors in a “proper balance” between the fast time-scale motion 

associated with gravity waves and slower motions such as associ- 

ated with the Rossby waves, lead typically to an abnormal evolu- 

tion of gravity waves, which in turn can cause appreciable devia- 

tions of weather forecasts. This filtering approach has a long his- 

tory in forecast initialization, e.g. [3,43] . 

To provide a remedy to this initialization problem, Leith pro- 

posed that a “proper balance” between fast and slow motion may 
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be postulated to exist, and, using the language of dynamical sys- 

tem theory, it was thought of as a manifold in the phase space of 

the PE consisting of orbits for which gravity waves motion is ab- 

sent. An iteration scheme was then developed to find from the ob- 

served state in phase space a corresponding initial state on such a 

“slow” manifold, so that weather forecasts with these initial states 

can be accurate on the same time scales as those of Rossby waves. 

In Leith’s treatment the filtering was equivalent to the Quasi- 

geostrophic approximation for asymptotically small Rossby num- 

ber, V / fL ( V a typical horizontal velocity, f the Coriolis frequency, 

and L a horizontal length). Solutions to the Quasigeostrophic model 

remain slow for all time. 

This idea was appealing for dealing with this filtering prob- 

lem, but uncertainty in the definition of a slow manifold for finite 

Rossby number has led to a proliferation of different schemes, on 

one hand, and to the question of whether a precise definition can 

be provided at all on the other hand, i.e., whether a slow invariant 

manifold even exists at finite Rossby number. 

The latter question is especially interesting from a theoretical 

point of view. Lorenz [41] was probably the first to address in at- 
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mospheric sciences the problem of definition and existence of a 

slow manifold as a dynamical system object, although the con- 

cept was analyzed by mathematicians prior to that work [20,21,56] . 

In that respect, he introduced a further simplified version of his 

truncated, nine-dimensional PE model derived originally in [40] to 

reduce it to a five dimensional system of ordinary differential 

equations (ODEs). He then identified the variables representing 

gravity waves as the ones which can exhibit fast oscillations, and 

defined the slow manifold as an invariant manifold in the five di- 

mensional phase space for which fast oscillations never develop. 

In a subsequent work, Lorenz and Krishnamurthy [38] after intro- 

ducing forcing and damping in the 5-variable model of [41] , iden- 

tified an orbit which by construction has to lie on the slow man- 

ifold. They followed its evolution numerically to show that sooner 

or later fast oscillations developed, thereby implying that a slow 

manifold according to their definition did not exist for the model. 

By relying on quadratic integral of motions, it was shown in 

[4] that the 5-variable model of [41] reduces to the following slow- 

fast system of four equations: 

˙ θ = w − εby, 

˙ w = − sin (θ ) , 

ε ˙ x = −y, 

ε ˙ y = x + b sin (θ ) . (1.1) 

In this form, the Lorenz–Krishnamurthy (LK) system (without dis- 

sipation and forcing terms) can be understood as describing the 

dynamics of a slow nonlinear pendulum ( w, θ ), with angle θ from 

the vertical, coupled in some way with a harmonic oscillator that 

can be thought as a stiff spring with constant ε−1 and of extension 

( x, y ). 

By a delicate usage of tools from the geometric singular per- 

turbation theory [32] to “blow up” the region near the singularity 

(of a saddle-center type) 1 at the origin, it was rigorously shown in 

[4] that the time evolution of initial data lying on the (homoclinic) 

orbit considered in [38] will invariably develop fast oscillations in 

the course of time. This result provided a partial answer to the 

question raised in [38] about the existence of a slow manifold, at 

least in the conservative case. 

Nevertheless, the outcome of such a study was seemingly in 

contradiction with those of [30] , which show, by relying essentially 

on a local normal form analysis, that for the (dissipative) LK sys- 

tem, a slow manifold exists. As noted by Lorenz himself in [42] , 

again what one means by “slow manifold” does matter. In [30] , 

the existence of such a manifold was only local in the phase space, 

which did not exclude thus the emergence of fast oscillations as 

one leaves the neighborhood of the relevant portion of the phase 

space, here near the Hadley point (0, F , 0, 0, 0). 2 Actually, the au- 

thors of [15] proved that a global manifold can be identified, but 

that this manifold is not void of fast oscillations and thus is not 

slow in the language of dynamical system theory. 

The implications of the results of [15] combined with the orig- 

inal numerical results of [38] , advocated thus an interesting phys- 

ical mechanism for the spontaneous generation of inertia-gravity 

waves. Lorenz and Krishnamurthy used numerical solutions to 

show in the low-Rossby-number, Quasigeostrophic regime that the 

amplitude of the inertia-gravity waves that are generated is actu- 

ally exponentially small, i.e. proportional to exp (−α/ε) , where ε < 

< 1 is the relevant small parameter and α > 0 is a structural con- 

1 This point corresponds to the unstable equilibrium of the pendulum and the 

neutral equilibrium of the harmonic oscillator. 
2 This point is an hyperbolic equilibrium of the LK system, a property that allows 

for the application of the standard Hartman-Grobman theory which can be further- 

more combined with the Siegel’s linearization theory [1] to infer rigorously to the 

existence of a local slow manifold; see [15] . 

stant. The generation of exponentially small inertia-gravity oscilla- 

tions takes place for t > 0, whereas the solutions are well balanced 

for t → −∞ . 

By means of elegant exponential-asymptotic techniques, 

Vanneste in [59] provided an estimate for the amplitude of the 

fast inertia-gravity oscillations that are generated spontaneously, 

through what is known as of the crossing of Stokes lines as time 

evolves, i.e. the crossing of particular time instants correspond- 

ing to the real part of poles close to the real (time) axis, in 

the meromorphic extension of the solutions (in complex time). 

These analytic results showed thus an exponentially small “fuzzi- 

ness” scenario (in Rossby number) to hold for the LK system; 

exponential smallness then has been argued to hold for more 

realistic flows by several complementary studies or experiments; 

e.g. [22,51,60,61,63,64] . 

Going back to the original reduced PE model of Lorenz [40] , we 

show on a rescaled version (described in Section 2.2 ) that while 

the emergence of small-amplitude fast oscillations is still synony- 

mous of the breakdown of (exact) slaving principles, a sharp dy- 

namical transition occurs as a parameter ε, which can be identified 

with the Rossby number, crosses a critical value ε∗ . Such a sud- 

den transition was pointed out in [62] . We conduct in this work 

a more detailed examination of this transition with in particular 

smaller time steps and a higher-order time-stepping scheme than 

used in [62] . This transition corresponds to the emergence of fast 

gravity waves that can contain a significant fraction of the energy 

(up to ∼ 40%) as time evolves and that may either populate tran- 

sient behaviors of various lengths or persist in an intermittent way 

as both time flows and ε varies beyond ε∗ ; see Section 2.3 . Al- 

though the mathematical characterization of this transition is an 

interesting question per se , we focus in this article on the conse- 

quences of such a critical transition on the closure problem for the 

slow rotational variables. For that purpose we revisit the Balance 

Equations (BE) [27] within the framework of parametrizing mani- 

folds (PMs) introduced in [9,12] for different but related parameter- 

ization objectives. 

As shown in Sections 3 and 4 below, the PM approach in- 

troduces a novel variational perspective on the closure problem 

exploiting manifolds which allows us to unify within a natural 

framework previous concepts such as the slow manifold [37] or 

other notions of approximate inertial manifolds [17,57,58] , as well 

as the “fuzzy manifold” [41,65,68] or “quasi manifold” [22] . This 

variational approach can even be made rigorous as shown in 

Appendix A . Theorem A.1 , proved therein, shows indeed that an 

optimal PM always exists and that it is the optimal manifold that 

averages out the fast oscillations, i.e. the best fuzzy manifold one 

can ever hope for in a certain sense. Detailed numerical computa- 

tions and rigorous error estimates (see Proposition 3.1 ) as well as 

comparison with other natural manifolds such as that associated 

with the Quasigeostrophic (QG) balance (see Section 4.2 ), show 

that the manifold underlying the BE provides a very good approx- 

imation of this optimal PM even beyond the criticality, when the 

fast gravity waves contain a large fraction of the energy. 

The framework introduced in this article allows us furthermore 

to relate the optimal PM to another key object, the slow conditional 

expectation . As explained in Section 4.1 below, the slow conditional 

expectation provides the best vector field of the space of slow 

variables that approximates the PE dynamics, and it can be eas- 

ily derived from the optimal PM (and thus the BE in practice); see 

(4.7) below. This slow conditional expectation (and thus the opti- 

mal PM) becomes however insufficient for closing with only the 

slow variables, i.e. for ε-values beyond ε∗ for which an explosion 

of energetic fast oscillations occurs, as explained in Section 4.3 . It 

is shown then that corrective terms are needed in such a situa- 

tion. These terms take the form of integral terms accounting for 

the cross-interactions between the slow and fast variables that the 
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