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The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast
inertia-gravity oscillations have long been considered an impediment to initialization of weather fore-
casts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized.
It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations

MSC: are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby
34F05 number is crossed, in contradistinction with fast oscillations emerging according to an exponential small-
35R60 ness scenario such as reported in previous studies, including some others by Lorenz. The consequences
37L05 of this dynamical transition on the closure problem based on slow variables is also discussed. In that
37155 respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This
37165 framework allows for a unification of previous concepts such as the slow manifold or other concepts of
60H15 “fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the
Keywords: averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through de-

tailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear
Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the
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emergence of fast and energetic oscillations.
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1. Introduction

The concept of a “slow manifold” was presented in a didactic
paper by Leith [37] in an attempt to filter out, on an analytical
basis, the fast gravity waves for the initialization of the Primitive
Equations (PE) of the atmosphere. The motivation was that small
errors in a “proper balance” between the fast time-scale motion
associated with gravity waves and slower motions such as associ-
ated with the Rossby waves, lead typically to an abnormal evolu-
tion of gravity waves, which in turn can cause appreciable devia-
tions of weather forecasts. This filtering approach has a long his-
tory in forecast initialization, e.g. [3,43].

To provide a remedy to this initialization problem, Leith pro-
posed that a “proper balance” between fast and slow motion may
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be postulated to exist, and, using the language of dynamical sys-
tem theory, it was thought of as a manifold in the phase space of
the PE consisting of orbits for which gravity waves motion is ab-
sent. An iteration scheme was then developed to find from the ob-
served state in phase space a corresponding initial state on such a
“slow” manifold, so that weather forecasts with these initial states
can be accurate on the same time scales as those of Rossby waves.
In Leith’s treatment the filtering was equivalent to the Quasi-
geostrophic approximation for asymptotically small Rossby num-
ber, V/fL (V a typical horizontal velocity, f the Coriolis frequency,
and L a horizontal length). Solutions to the Quasigeostrophic model
remain slow for all time.

This idea was appealing for dealing with this filtering prob-
lem, but uncertainty in the definition of a slow manifold for finite
Rossby number has led to a proliferation of different schemes, on
one hand, and to the question of whether a precise definition can
be provided at all on the other hand, i.e., whether a slow invariant
manifold even exists at finite Rossby number.

The latter question is especially interesting from a theoretical
point of view. Lorenz [41] was probably the first to address in at-
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mospheric sciences the problem of definition and existence of a
slow manifold as a dynamical system object, although the con-
cept was analyzed by mathematicians prior to that work [20,21,56].
In that respect, he introduced a further simplified version of his
truncated, nine-dimensional PE model derived originally in [40] to
reduce it to a five dimensional system of ordinary differential
equations (ODEs). He then identified the variables representing
gravity waves as the ones which can exhibit fast oscillations, and
defined the slow manifold as an invariant manifold in the five di-
mensional phase space for which fast oscillations never develop.
In a subsequent work, Lorenz and Krishnamurthy [38] after intro-
ducing forcing and damping in the 5-variable model of [41], iden-
tified an orbit which by construction has to lie on the slow man-
ifold. They followed its evolution numerically to show that sooner
or later fast oscillations developed, thereby implying that a slow
manifold according to their definition did not exist for the model.

By relying on quadratic integral of motions, it was shown in
[4] that the 5-variable model of [41] reduces to the following slow-
fast system of four equations:

0 =w-— €by,

w = —sin(9),

€X = -y,

€y = x+ bsin(0). (1.1)

In this form, the Lorenz-Krishnamurthy (LK) system (without dis-
sipation and forcing terms) can be understood as describing the
dynamics of a slow nonlinear pendulum (w, 9), with angle 6 from
the vertical, coupled in some way with a harmonic oscillator that
can be thought as a stiff spring with constant e~! and of extension
(x, ).

By a delicate usage of tools from the geometric singular per-
turbation theory [32] to “blow up” the region near the singularity
(of a saddle-center type)' at the origin, it was rigorously shown in
[4] that the time evolution of initial data lying on the (homoclinic)
orbit considered in [38] will invariably develop fast oscillations in
the course of time. This result provided a partial answer to the
question raised in [38] about the existence of a slow manifold, at
least in the conservative case.

Nevertheless, the outcome of such a study was seemingly in
contradiction with those of [30], which show, by relying essentially
on a local normal form analysis, that for the (dissipative) LK sys-
tem, a slow manifold exists. As noted by Lorenz himself in [42],
again what one means by “slow manifold” does matter. In [30],
the existence of such a manifold was only local in the phase space,
which did not exclude thus the emergence of fast oscillations as
one leaves the neighborhood of the relevant portion of the phase
space, here near the Hadley point (0, F, 0, 0, 0).2 Actually, the au-
thors of [15] proved that a global manifold can be identified, but
that this manifold is not void of fast oscillations and thus is not
slow in the language of dynamical system theory.

The implications of the results of [15] combined with the orig-
inal numerical results of [38], advocated thus an interesting phys-
ical mechanism for the spontaneous generation of inertia-gravity
waves. Lorenz and Krishnamurthy used numerical solutions to
show in the low-Rossby-number, Quasigeostrophic regime that the
amplitude of the inertia-gravity waves that are generated is actu-
ally exponentially small, i.e. proportional to exp(—o//€), where € <
<1 is the relevant small parameter and « > 0 is a structural con-

1 This point corresponds to the unstable equilibrium of the pendulum and the
neutral equilibrium of the harmonic oscillator.

2 This point is an hyperbolic equilibrium of the LK system, a property that allows
for the application of the standard Hartman-Grobman theory which can be further-
more combined with the Siegel’s linearization theory [1] to infer rigorously to the
existence of a local slow manifold; see [15].

stant. The generation of exponentially small inertia-gravity oscilla-
tions takes place for t > 0, whereas the solutions are well balanced
for t — —o0.

By means of elegant exponential-asymptotic techniques,
Vanneste in [59] provided an estimate for the amplitude of the
fast inertia-gravity oscillations that are generated spontaneously,
through what is known as of the crossing of Stokes lines as time
evolves, i.e. the crossing of particular time instants correspond-
ing to the real part of poles close to the real (time) axis, in
the meromorphic extension of the solutions (in complex time).
These analytic results showed thus an exponentially small “fuzzi-
ness” scenario (in Rossby number) to hold for the LK system;
exponential smallness then has been argued to hold for more
realistic flows by several complementary studies or experiments;
e.g. [22,51,60,61,63,64].

Going back to the original reduced PE model of Lorenz [40], we
show on a rescaled version (described in Section 2.2) that while
the emergence of small-amplitude fast oscillations is still synony-
mous of the breakdown of (exact) slaving principles, a sharp dy-
namical transition occurs as a parameter €, which can be identified
with the Rossby number, crosses a critical value €«. Such a sud-
den transition was pointed out in [62]. We conduct in this work
a more detailed examination of this transition with in particular
smaller time steps and a higher-order time-stepping scheme than
used in [62]. This transition corresponds to the emergence of fast
gravity waves that can contain a significant fraction of the energy
(up to ~ 40%) as time evolves and that may either populate tran-
sient behaviors of various lengths or persist in an intermittent way
as both time flows and € varies beyond e¢«; see Section 2.3. Al-
though the mathematical characterization of this transition is an
interesting question per se, we focus in this article on the conse-
quences of such a critical transition on the closure problem for the
slow rotational variables. For that purpose we revisit the Balance
Equations (BE) [27] within the framework of parametrizing mani-
folds (PMs) introduced in [9,12] for different but related parameter-
ization objectives.

As shown in Sections 3 and 4 below, the PM approach in-
troduces a novel variational perspective on the closure problem
exploiting manifolds which allows us to unify within a natural
framework previous concepts such as the slow manifold [37] or
other notions of approximate inertial manifolds [17,57,58], as well
as the “fuzzy manifold” [41,65,68] or “quasi manifold” [22]. This
variational approach can even be made rigorous as shown in
Appendix A. Theorem A.1, proved therein, shows indeed that an
optimal PM always exists and that it is the optimal manifold that
averages out the fast oscillations, i.e. the best fuzzy manifold one
can ever hope for in a certain sense. Detailed numerical computa-
tions and rigorous error estimates (see Proposition 3.1) as well as
comparison with other natural manifolds such as that associated
with the Quasigeostrophic (QG) balance (see Section 4.2), show
that the manifold underlying the BE provides a very good approx-
imation of this optimal PM even beyond the criticality, when the
fast gravity waves contain a large fraction of the energy.

The framework introduced in this article allows us furthermore
to relate the optimal PM to another key object, the slow conditional
expectation. As explained in Section 4.1 below, the slow conditional
expectation provides the best vector field of the space of slow
variables that approximates the PE dynamics, and it can be eas-
ily derived from the optimal PM (and thus the BE in practice); see
(4.7) below. This slow conditional expectation (and thus the opti-
mal PM) becomes however insufficient for closing with only the
slow variables, i.e. for e-values beyond e« for which an explosion
of energetic fast oscillations occurs, as explained in Section 4.3. It
is shown then that corrective terms are needed in such a situa-
tion. These terms take the form of integral terms accounting for
the cross-interactions between the slow and fast variables that the
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