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The purpose of this paper is to present an efficient solution for energy optimization problem. We have 

identified some similarities between portfolio optimization and energy optimization. Using Kuhn–Tucker 

conditions we compute the efficient solution for a bi-criteria energy optimization problem. 
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1. Introduction 

This paper is dedicated to Chuck Leith who was a pioneer in 

numerical simulation and development of predictive modeling ca- 

pabilities for atmospheric and climate dynamics [16,24] . Challenges 

associated with a rapidly rising global population – an increase 

of more than 2.5 billion new urban inhabitants is projected by 

2050, relative to 2011 – require high resolution physics-based, cou- 

pled, dynamic, and predictive capabilities that not only character- 

ize current multi-scale environmental and socio-economic inter- 

actions but also enable the prediction of future impacts within 

growing cities. Feedback loops and nonlinear interactions inter- 

connect physical and human processes. Understanding of emer- 

gent regional climate modifiers (urbanization, energy, water, agri- 

culture) on decadal scales cannot be realized simply by studying 

these components in isolation. Scenario-based analysis and model- 

ing techniques serve as a new paradigm for integrated studies of 

regional and urban climate systems on decadal timescales, which 

are critically important for policy makers [18,25] . Novel computa- 

tional methods to accelerate and improve accuracy of multi-scale 
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nested models and data analytics are implemented to examine 

scale dependency of simulated outcomes. The advanced physics- 

based predictive analytics and statistical modeling tools are uti- 

lized to conduct ensemble-based regional hydro climate simula- 

tions, focusing on a set of rapidly urbanizing megapolitan areas 

across multiple climate zones. 

Strategic adaptation plans require development to increase pro- 

duction of agricultural commodities, maximize energy and land- 

use efficiency, enhance community engagement, reduce transporta- 

tion costs while enhancing profitability, and mitigate adverse im- 

pacts such as the urban heat island effect and anthropogenic heat- 

ing of the urban environment due to air conditioning [25] . De- 

velopment and refinement of physics based predictive modeling 

and assessment tools used at fine spatial resolution is necessary to 

effectively quantify co-benefits and reveal trade-offs prior to any 

strategy deployment. For example, changes to the worlds electri- 

cal power systems and grids threaten to require massive infras- 

tructure investment and cost to power utilities, especially increas- 

ing population, built environment and electrical energy demands 

during peak summertime air conditioning loads, and mismatches 

between timing of supply and demand due to increases in renew- 

able energy [22] . Brownouts and other grid failures are projected 

to become more common as peak demands approach grid capac- 

ities, with negative economic and public health consequences re- 

sulting. Meanwhile a financial barrier exists for the financing of 
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grid improvements because utility revenues are proportional to to- 

tal power sales, whereas utility costs are driven largely by capi- 

tal and maintenance for the fixed infrastructure. Analyzing daily 

consumption of energy, fluctuations are visible and even more in- 

tense in extreme temperature areas due to summer air condition- 

ing demands. To reduce energy fluctuation and extreme consump- 

tion, Ruddell, Salamanca and Mahalov [22] have created a model 

which enables a partial shift of power demand from peak load, 

during extreme events such as heat waves. 

Large fluctuations/large deviations in electric grids constitute a 

threat for economic activities. When we analyze energy produc- 

tion, fluctuations have an even bigger impact due to technologi- 

cal complexity of starting/stopping production facilities and stor- 

ing energy. Reducing daily fluctuation of energy consumption is an 

objective for the producers, together with the general objective for 

each company to maximize its profits. Analyzing the entire process 

from this point of view, we had identified a similarity between en- 

ergy optimization and portfolio selection problems. Energy fluctu- 

ation may be regarded as risk from portfolio selection, while com- 

pany’s result is similar to total wealth. 

How do we measure fluctuation/risk and how do we measure 

company’s result/wealth? Let’s go back to the origins of portfo- 

lio selection. In 1952, Markowitz [19] introduced Mean Variance 

Model. Variance ( l 2 function) is used to measure the risk, while to- 

tal wealth is calculated as total amount of money cashed in by the 

investor. The objective is to minimize risk while total wealth does 

not fall below a specified level or maximize total wealth while risk 

does not exceed a predefined level. Although Markowitz’s paper 

is considered a milestone for portfolio selection, implementation 

of Mean Variance Model is difficult due to quadratic form of ob- 

jective function. Reviewing the literature, we have identified five 

main directions followed by researchers to extend and improve 

Markowitz’s Mean Variance model: extending the single period 

model to multiperiod (see Smith [30] , Mossin [21] , Merton [20] , 

Samuelson [26] , Fama [10] , Hakkanson [12] , Elton and Gruber [8,9] , 

Li and Ng [17] ); introduction of transaction costs in the model (see 

Constantinides [6] , Perold [23] , Dumas and Luciano [7] ); sensitiv- 

ity of models to input data (see Best and Grauer [1,2] , Chopra, 

Hensel and Turner [5] ); developing some approximation schemes 

(see Sharpe [27–29] , Stone [31] , Lee, Finnerty and Wort [15] , Huang 

and Qiao [13] ); considering new measures for risk (see Konno and 

Yamazaki [14] , Cai et al. [4] ). Konno proposed as measure for risk 

the mean absolute deviation which is an l 1 function, while Cai et al. 

measured risk as the maximum over all assets of absolute devia- 

tion which is an l ∞ 

function. 

Our paper develops a new approach for energy optimization, 

based on bi-criteria programming. We employ the risk measure 

introduced in [4] . These techniques are modified and extended 

to evaluate the energy fluctuation problem. In Section 2 we for- 

mulate a mathematical model for the energy consumption prob- 

lem. In Section 3 we develop an optimization procedure and com- 

pute optimal solutions. This paper concludes with a discussion in 

Section 4 . 

2. Problem formulation 

An energy plant focuses the problem on determining the op- 

timum quantity of energy to be produced every hour, such that 

fluctuation of energy during a period of time is reduced to mini- 

mum, turnover is maximized and some constraints imposed by the 

market are fulfilled. 

First of all, from the way the problem is defined, it is clear that 

we are dealing with a bi-criteria problem, where fluctuation has to 

be minimized and turnover maximized. 

Definition 2.1. Fluctuation of energy is the difference between en- 

ergy produced at a certain hour and a predefined level of energy. 

Remark 2.1. Predefined level of energy may be for example a ran- 

dom value chosen by energy plant or the average energy produced 

during a certain period from the past. Of course, when the average 

is employed, it may be adjusted with a factor to cover the forcasted 

demand. 

How do we measure fluctuation and turnover? If we think to 

portfolio selection, we state that risk from portfolio selection and 

fluctuation from energy optimization are similar and therefore the 

measures for risk will be valid also for fluctuation. The portfolio 

selection literature provides, among others, the following measures 

for risk: variance [19] ( l 2 function), mean absolute deviation [14] 

( l 1 function), maximum absolute deviation [4] ( l ∞ 

function) and 

conditional value at risk. For our problem, we will employ max- 

imum absolute deviation to measure fluctuation and as predefined 

level we will use the average. To compute turnover we will refer 

to a basic economic principle which states that turnover is the 

total, over entire period of time, of quantity multiplied with price. 

Which is the measuring unit for fluctuation and turnover? Re- 

garding turnover, it is clear that it is measured in money (dollars, 

euro). Fluctuation is referring to energy, which is measured in KWh 

or multipliers, but does this measuring unit satisfy our problem? 

To solve the bi-criteria problem, we will transform it in an equiv- 

alent parametric problem, which lead to idea that fluctuation and 

turnover have to be expressed in the same measuring unit. There- 

fore we have to evaluate fluctuation in money so we will multiply 

energy fluctuation with price. Introduction of price in the measure 

of fluctuation is a plus for our optimization process, because price 

is an element with a considerable impact on demand. 

In our paper we are imposing only a simple condition for the 

energy produced, which means that energy is bounded by the min- 

imum level of energy which the energy plant has to deliver and 

the maximum production capacity. 

Denoting by 1 , 2 , . . . , i, . . . ., n the time horizon for which the en- 

ergy has to be optimized and 

x i - energy produced at hour i , i = 1 , n , 

p i - price of energy at hour i , i = 1 , n , 

r - predefined level of energy, 

ε - minimum level of energy which the energy plant has to 

deliver, 

ρ - maximum production capacity of the energy plant, 

we have the following mathematical expressions for 

fluctuation of energy 

max 
i = 1 ,n 

| p i x i − p i r | 
turnover 

n ∑ 

i =1 

p i x i 

constraints 

ε ≤ x i ≤ ρ, i = 1 , n 

which are determining the following mathematical model for our 

problem ⎧ ⎨ 

⎩ 

min 

(
max 
i = 1 ,n 

| p i x i − p i r | , −
n ∑ 

i =1 

p i x i 

)T 

ε ≤ x i ≤ ρ, i = 1 , n . 

(2.1) 

3. Computing the solution 

We recall that for a problem {
min f (x ) 

x ∈ X 
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