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a b s t r a c t 

The paper presents numerical analysis of finite difference schemes for solving the linear convection- 

diffusion equation using a full domain spectral analysis method illustrated in Sengupta et al. (2003) [7]. 

Different numerical schemes ranging from simple central and upwind difference schemes to high accu- 

racy schemes like compact and combined compact difference schemes are analyzed for their accuracy. 

Optimal values of simulation parameters are proposed for the analyzed schemes with a view to obtain 

accurate solutions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Among various natural phenomena, convection, diffusion and 

convection-diffusion processes are the most fundamental, as they 

occur in a wide range of disciplines like fluid flows, climate stud- 

ies, biological systems, chemical processes, energy, astrophysics etc. 

to name a few. The governing equations which describe them are 

in general non-linear and hence difficult to solve using analytical 

methods. Therefore, numerical techniques are employed for solu- 

tion. It should be noted that the numerical solution is, in gen- 

eral, an approximation to the exact solution and the accuracy de- 

pends on the scheme’s ability to faithfully represent the physics 

described by the equation. Hence, numerical analysis plays an 

important role, if one seeks to quantify the errors and thereby 

measure the accuracy of schemes. Due to the complex nature of 

most governing equations of convective, diffusive and convective- 

diffusive processes, non-linearity which introduces difficulties in 

analysis and non-availability of exact/reference solutions needed 

for comparison, one uses prototype or model equations. These 

model equations are the linear convection, linear diffusion and lin- 

ear convection-diffusion equations, to name only a few. 
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Traditionally finite difference based numerical schemes have 

been analyzed either using von Neumann analysis [1,2] or GKS sta- 

bility theory [3] or time-stability analysis [4,5] . These approaches 

have limitations with the most notable one being their inability to 

analyze in the spectral space by full domain analysis with actual 

time discretization method. On the other hand, a full domain spec- 

tral analysis with appropriate error metrics [6] reveals more infor- 

mation about stability/instability, dispersion and dissipation errors 

for all length and time scales. This information is extremely crit- 

ical in evaluating/ designing dispersion relation preserving (DRP) 

schemes for direct numerical simulation (DNS)/ large eddy simu- 

lation (LES). In [7] , a spectral analysis method is adopted follow- 

ing the approach of Vichnevetsky and Bowles [8] and different nu- 

merical schemes have been analyzed with one-dimensional linear 

convection equation serving as a model equation. The analysis also 

demonstrates an interesting property for the same model convec- 

tion equation that signal and error have different dynamics [9] for 

any discretization scheme. In [10] error dynamics of a general fi- 

nite difference based scheme for linear diffusion equation is de- 

rived and errors are quantified for some popular schemes. It is 

remarkable to note that the phase speed in convection equation 

and the coefficient of diffusion in the heat equation, do not remain 

constant numerically. In the present research, we will generalize 

these observations for convection-diffusion equation. Recently, this 

global spectral analysis (GSA) has been used in developing and an- 
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alyzing a positivity preserving discrete Galerkin method in [11] for 

convection-diffusion-reaction equation in Galerkin and least square 

framework. 

We briefly state the reason of the present investigation on finite 

difference method, over other discretization techniques like finite 

volume and finite element methods. The focus here is to quantify 

error sources in solving this model convection-diffusion equation 

as accurately as possible. There have been earlier effort s where 

one-dimensional convection and Euler equations have been solved 

using high accuracy compact schemes for finite volume and finite 

difference method in [12] . It was noted specifically for the Riemann 

problem that the same compact scheme was superior with the fi- 

nite difference method. Similar spectral analysis was reported in 

[13] for Galerkin finite element method, with respect to q -waves 

for different numerical methods in solving one-dimensional con- 

vection equation. While it was noted that finite element methods 

have good dispersion error properties, excessive diffusion causes 

these methods to be relatively less accurate as compared to finite 

difference methods. 

In this paper we chose the linear 1D convection-diffusion equa- 

tion as it is a closer linearized model of the governing Navier–

Stokes equations of fluid dynamics. The numerical analysis of 

the finite difference schemes for this equation is conducted in 

[14–17] . However, as per our knowledge, a spectral analysis has 

not been performed with the appropriate metrics. It would there- 

fore be beneficial and appropriate to analyze this equation in the 

spectral framework due to the advantages mentioned previously. 

This is the main motivation for the present work. We choose dif- 

ferent spatial discretization schemes like explicit central, upwind, 

compact [7] and combined compact difference schemes [18,19] , in 

conjunction with two different time discretization schemes- Euler 

and fourth order Runge–Kutta ( RK 4 ) schemes, for the numerical 

analysis. The stability/instability regions are identified and simu- 

lation parameters for achieving good accuracy are presented. The 

results of the numerical analysis will have a beneficial influence 

on CFD and various other fields involving simulation of convection- 

diffusion processes. 

The paper is presented in the following manner. In the next 

section, the global spectral analysis is illustrated for the linear 

1D convection-diffusion equation and an exact spectral transfer 

function is derived for the equation. In Section 3 , analysis of 

numerical schemes is presented where explicit central, upwind, 

compact and combined compact schemes are used for the spatial 

discretization and Euler, RK 4 schemes are adopted for the temporal 

discretization. In Section 4 , the numerical solution of the linear 

convection-diffusion equation is compared to the exact solution 

for various simulation parameters and the results are corroborated 

with the findings of global spectral analyses. The paper ends with 

Section 5 with conclusion. 

2. Spectral analysis of linear 1D convection-diffusion equation 

We consider the linear convection-diffusion equation 

∂u 

∂t 
+ c 

∂u 

∂x 
= α

∂ 2 u 

∂x 2 
(1) 

where c and α are constants denoting the convection speed and 

coefficient of diffusion respectively. The first step in performing a 

global spectral analysis is to represent the unknown, u ( x, t ), in the 

hybrid spectral plane [6,7] , which is given by, 

u (x, t) = 

∫ 
ˆ U (k, t) e ikx dk (2) 

where ˆ U is the Fourier amplitude and k is the wavenumber. Sub- 

stituting this in the convection-diffusion equation we obtain the 

transformed equation in the spectral space given by, 

d ̂  U 

dt 
+ ick ̂  U = −αk 2 ˆ U (3) 

The above equation is solved for a general initial condition 

u (x, 0) = f (x ) = 

∫ 
ˆ F (k ) e ikx dk to obtain the exact solution 

ˆ U (k, t) = 

ˆ F (k ) e −αk 2 t e −ikct (4) 

To obtain the dispersion relation, we represent the unknown 

by the bi-dimensional Fourier–Laplace transform, i.e., u (x, t) = ∫ ∫ 
ˆ U (k, ω) e i (kx −ωt) d kd ω which gives the following dispersion rela- 

tion 

ω = ck − iαk 2 (5) 

The dispersion relation is an important property for wave prop- 

agation problems and it describes the phase and group velocities 

for signal propagation. Hence, any numerical scheme employed to 

solve such problems must satisfy the physical dispersion relation 

for the purpose of accuracy [6,9] . Such numerical schemes are said 

to be DRP schemes [6] . A very concise and clear explanation of 

the correct dispersion relation in the context of multiple time level 

scheme is given in [20] for the convection equation. The same ap- 

proach is followed here for the convection-diffusion equation. 

From the above dispersion relation one can obtain the complex 

phase speed as 

c phys = 

ω 

k 
= c − iαk (6) 

The physical group velocity as per definition is then 

V g,phys = 

∂ω 

∂k 
= c − 2 iαk (7) 

Therefore, α = 

i 
2 k 

(V g,phys − c) . Further expanding the real and 

complex parts of the complex quantities we obtain 

α = 

i 

2 k 

[
(V g,phys ) real − c) 

]
− (V g,phys ) imag 

2 k 
(8) 

Since α is real, (V g,phys ) real = c is the condition for a physically 

diffusive system and as the right hand side of Eq. (1) is diffusive 

and not anti-diffusive, therefore one must have 
(V g,phys ) imag 

2 k 
< 0 . 

The physical amplification factor G phys can be obtained from 

Eq. (4) and is given by 

G phys = 

ˆ U (k, t + �t) 

ˆ U (k, t) 
= e −αk 2 �t e −ikc�t = e −iω�t = e −Pe (kh ) 2 e −iN c (kh ) 

(9) 

Note that we have purposely introduced N c (= 

c�t 
h 

) , which is 

the CFL number and Pe (= 

α�t 
h 2 

) , is the Peclet number in the above, 

as these are the non-dimensional parameters for this equation. 

The variable h here is the grid spacing. The absolute part of G is 

the amplification factor. A portrait of physical amplification factor 

for three values of Peclet numbers viz., Pe = 0 . 05 , 0.25 and 0.5 is 

shown in Fig. 1 . We can see that as the Peclet number increases, 

the rate of diffusion also increases due to Eq. (9) . We have not 

shown contours for the physical phase speed as it is exactly equal 

to c for every wavenumber k . 

Similarly, every numerical scheme has a corresponding ampli- 

fication factor G num 

, which indirectly defines a numerical disper- 

sion relation governing the evolution of the solution. It is, there- 

fore, clear that for a numerical scheme to faithfully reproduce the 

physics of the governing equations, G num 

must be very close to 

G phys . In the case of the 1D linear convection-diffusion equation, 

the numerical dispersion relation is directly obtained by drawing 

analogy from Sengupta et al. [9] and Sengupta and Bhole [10] for 

pure convection and pure diffusion equations as, 

ω num 

= kc num 

− iαnum 

k 2 (10) 
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