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a b s t r a c t 

A parallel fully-coupled numerical algorithm has been developed for the fluid-structure interaction prob- 

lem in a cerebral artery with aneurysm. For the fluid part of the problem, an Arbitrary Lagrangian- 

Eulerian formulation based on the side-centered unstructured finite volume method is employed for the 

governing incompressible Navier–Stokes equations. The deformation of the solid domain is governed by 

the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite 

element method is used to discretise the governing equations in a Lagrangian frame. The time integra- 

tion method for the structure domain is based on the Newmark type generalized −α method while the 

second-order backward difference (BDF2) is used in the fluid domain. A special attention is given to 

construct an algorithm obeying the local/global discrete geometric conservation laws (DGCL) in order to 

conserve fluid volume at machine precision when the fluid domain is entirely enclosed by solid domain 

boundary. Therefore, a compatible kinematic boundary condition is applied at the interface between the 

solid and fluid domains. The parallel implementation of the present fully coupled unstructured fluid- 

structure solver is based on the PETSc library and a one-level restricted additive Schwarz preconditioner 

with a block-incomplete factorization within each partitioned sub-domains is utilized for the resulting 

fully coupled system. The proposed algorithm is initially validated for a pressure pulse propagating in 

a flexible tube and the mass conservation accuracy is tested for a thin elastic sphere filled with an in- 

compressible fluid in a circular tube. Then the numerical method is applied to a complicated problem 

involving unsteady pulsatile blood flow in a cerebral artery with aneurysm as a realistic fluid-structure 

interaction problem encountered in biomechanics. Various hemodynamic quantities of interest like fluid 

velocities, blood pressure and wall shear stresses (WSS) are computed as well as the time dependent 

artery wall deformations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Hemodynamics, which is basically the fluid dynamics of blood 

flow, plays a significant role in cardiovascular physiology in un- 

derstanding the physical mechanisms that govern the interaction 

between blood pressure, velocity, shear stresses, vascular resis- 

tance, and how these quantities of interest are impacted by the 

vessel wall geometry and the boundary conditions. The compu- 

tational models for simulating the mechanics of the blood flow 

through the veins are mainly based on solving the Navier–Stokes 

equations of incompressible viscous flow on the computational 
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cardiovascular domain of interest. Although the primary variables 

of such a numerical model are the flow velocity and the pres- 

sure, the hemodynamic quantities of significant importance are 

mainly the wall shear stresses (WSS) and the wall shear stress 

gradients (WSSG), since the formation and progression of diverse 

cardiovascular diseases such as aneurysms, atherogenesis, growth 

and remodeling of arteries are directly related to these shear 

stresses, which can be simply derived from the flow velocity 

field. 

Computational hemodynamics has emerged as a powerful non- 

invasive tool in investigation of cardiovascular diseases, which are 

influenced by hemodynamic factors. The first applications of pure 

computational fluid dynamics (CFD) approaches for the simulation 

of blood flow in patient-specific geometries can be traced back 

to the studies of Taylor et al. [1] , where the authors applied a 

stabilized finite element based numerical modeling for the solu- 
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tion of the incompressible Navier–Stokes equations on unstruc- 

tured tetrahedral meshes generated using octree method. The CFD 

approaches for cardiovascular flow simulation still have valuable 

use, for example for cerebral aneurysms [2,3] ; coronary arteries 

[4] , [5] ; simulation of stenting technology for cerebral aneurysms 

[6] , and coronary arteries [7] . New methods also have been pro- 

posed to impose realistic boundary conditions in context of mul- 

tiscale coupling methods as presented by Vignon-Clementel et al. 

[8] and Moghadam et al. [9] . Although the use of CFD approach in 

biomedical applications has enabled advances in understanding of 

the mechanics of blood flow and how the hemodynamic quantities 

of interest are interrelated, there is the inherent drawback of the 

pure CFD approach that the solid boundary, like the blood vessel 

in the case of cardiovascular systems, is modeled as being rigid, 

which is physiologically unrealistic. In fact, in many cases large 

displacements of vessel walls are observed as a result of hemo- 

dynamic forces, which further elevate the blood flow pattern in 

an interactive way to further reshape the hemodynamics of the 

system. In addition, the deformation velocity at the blood vessel 

boundary will significantly alter the velocity field within the blood 

vessel. This is particularly important in the case of elastic waves 

propagating along the artery walls [10] . In several cardiovascular 

fluid-structure interaction (FSI) studies, the effects of employing a 

flexible vessel wall structure opposed to the rigid wall assump- 

tion of pure CFD modeling have been demonstrated, for instance 

in the context of cerebral aneurysms [11] and [12] ; for carotid 

artery [13] , and for the total cavopulmonary connection [14] . It has 

been observed that the rigid wall assumption consistently over- 

estimates the wall shear stresses compared to elastic vessel wall, 

and this overestimation can be substantially different in FSI and 

rigid wall simulations [10] . In order to obtain a more realistic so- 

lution, the blood flow through the surrounding vessel wall need 

to be modeled as a coupled FSI problem, although it will intro- 

duce increasing modeling complexity and computational demands. 

In cardiovascular FSI, the blood flow within the moving/deforming 

elastic vessel walls is generally governed by the incompressible 

Navier–Stokes equations. One widely used method to formulate the 

Navier–Stokes equations on moving boundaries in blood flow sim- 

ulations is the arbitrary Lagrangian–Eulerian (ALE) formulation as 

depicted in [15–17] . An alternative way is the space-time method- 

ology presented in [11,13,17,18] , which somewhat suffers from com- 

putational efficiency per time step, but has higher time accuracy 

[12] . 

In the ALE method [19] , the mesh follows the interface between 

the fluid and solid boundary and the governing equations are dis- 

cretized on a moving mesh. This differs from the standard Eulerian 

formulation in a way that the mesh movement has to fulfill spe- 

cial conditions in order to maintain the accuracy and the stability 

of the time integration scheme. This condition is satisfied by the 

enforcement of the so-called discrete geometric conservation law 

(DGCL) as coined by Thomas and Lombard [20] . Although the GCL 

is satisfied easily in the continuous sense, its discrete implementa- 

tion may not be trivially satisfied. The ALE time integration scheme 

developed by Koobus and Farhat [21] is based on more continuous 

time integration of the fluxes and offers second-order accuracy in 

time obeying the GCL. Geuzaine et al. [22] have showed that the 

GCL is neither a necessary nor a sufficient condition for an ALE 

scheme to preserve its order of time accuracy established on fixed 

meshes. The ALE approach was subsequently adopted within the 

finite element context to solve free surface problems of incom- 

pressible viscous fluid flow [23] . In the case of an FSI problem, the 

deformable fluid-structure interface is taken into account and the 

fluid points at the fluid-solid interface are moved in a Lagrangian 

way [24] . In the current work, a special attention is given to con- 

struct an FSI algorithm with exact mass conservation at machine 

precision. The exact mass conservation for FSI simulations is a 

rather difficult challenge to overcome since it requires not only the 

satisfaction of continuity equation within each element at machine 

precision (div-stable discretization) but also a compatible kine- 

matic boundary condition at the fluid-structure interface. The com- 

patible kinematic boundary condition ensures that the interface 

velocity is in accordance with the global discrete geometric con- 

servation law (DGCL) as well as the discrete form of the continuity 

equation so that the total fluid mass is conserved at machine preci- 

sion. To our best knowledge, the exact mass conservation for three- 

dimensional fluid-structure interaction problems is attempted only 

in the work of Bazilevs et al. [25] using a NURBS-based isogeo- 

metric analysis. However, the mass conservation is achieved on the 

order of 10 −4 and the error is attributed to the iterative solver tol- 

erance. Although the Eulerian approaches have also been used for 

the simulation of the fluid-structure interaction problems around 

complex geometrical shapes [26–28] , the use of these approaches 

for large mesh deformations requires relatively high mesh reso- 

lution in large percentages of the fluid computational domain, or 

adaptive mesh refinement, in order to properly capture the viscous 

effects. 

There are mainly two solution procedures for the numeri- 

cal simulation of fluid-structure interaction problems: partitioned 

(segregated) [29–31] or fully coupled (monolithic) [32–37] meth- 

ods. In the partitioned approach, separate solvers are utilized for 

the fluid and structure subproblems. The main advantage of the 

partitioned approach is the ability to reuse existing solvers which 

allows the application of different, possibly more efficient, com- 

putational methods specifically developed for either the fluid or 

the structure subproblem. Both explicit or implicit methods can be 

used in order to couple the fluid and structure solvers in parti- 

tioned approaches. In explicit partitioned methods, which are also 

known as loosely or weakly coupled methods, typically a fixed 

point (Picard) iteration is employed to obtain a coupled solution. 

Although the implementation of this approach is relatively easy, 

it does, however, suffer from some serious drawbacks. The fixed 

point iterations tend to converge slowly and the iterations may di- 

verge in the presence of strong fluid-structure coupling due to the 

high fluid/structure density ratio which causes the so-called arti- 

ficial added mass effect [38] . For strong coupling in partitioned 

procedures, on the contrary, several fluid and structure computa- 

tions are performed in a single time-step until a satisfactory con- 

vergence tolerance is reached. This approach, however, requires 

costly sub-iterations and the sub-iteration convergence may not 

be guaranteed. In addition, the accuracy and the stability of the 

coupling method used in FSI modeling are strongly dependent 

on the physical problem that it is being applied to. For instance, 

in the case of a biomechanics application, such as cardiovascu- 

lar FSI, the densities of the blood and the surrounding cardio- 

vascular tissue are comparable, which yields a highly nonlinear 

strong coupling of the fluid and the structure so that the clas- 

sical segregated time-marching methods may result in uncondi- 

tionally unstable solutions [39] . In a fully coupled (monolithic) ap- 

proach, the fluid and structure equations are discretized and solved 

simultaneously as a single equation system for the entire prob- 

lem. In the present monolithic approach, the original system of 

equations is preconditioned with an upper triangular right pre- 

conditioner which results in a scaled discrete Laplacian instead 

of a zero block in the original system due to the divergence- 

free constraint. Then a one-level restricted additive Schwarz pre- 

conditioner with a block-incomplete factorization within each 

partitioned sub-domains is utilized for the resulting fully cou- 

pled system. The implementation of the preconditioned Krylov 

subspace algorithm, matrix-matrix multiplication and the re- 

stricted additive Schwarz preconditioner are carried out using the 

PETSc [40] software package developed at the Argonne National 

Laboratories. 
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