
Computers and Fluids 147 (2017) 41–62 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

Development and validation of a multi-strand solver for complex 

aerodynamic flows 

Vinod K. Lakshminarayan 

a , 1 , ∗, Jayanarayanan Sitaraman 

b , 1 , Beatrice Roget a , 1 , 
Andrew M. Wissink 

c , 2 

a Science & Technology Corporation, NASA Ames Research Center, Moffett Field, CA USA 
b Parallel Geometric Algorithms LLC, Sunnyvale, CA USA 
c US Army Aviation Development Directorate - ADD (AMRDEC), Moffett Field, CA USA 

a r t i c l e i n f o 

Article history: 

Received 12 August 2016 

Revised 16 December 2016 

Accepted 1 February 2017 

Available online 2 February 2017 

Keywords: 

Strand grid 

Multi-strand approach 

Compressible flow 

Finite volume method 

Dual-mesh paradigm 

Cartesian AMR 

Hovering rotor 

Tip vortices 

a b s t r a c t 

The strand grid approach is a flow solution method where a prismatic-like grid using “strands” is grown 

to a short distance from the body surface to capture the viscous boundary layer and the rest of the do- 

main is covered using an adaptive Cartesian grid. The approach offers several advantages in terms of 

nearly automatic grid generation and adaptation, ability to implement fast and efficient flow solvers that 

use structured data in both the strand and Cartesian grids, and the development of efficient and highly 

scalable domain connectivity algorithm. An improvement to this approach is the multi-strand strategy, 

where multiple strands are allowed from each surface vertex to enhance grid resolution near sharp cor- 

ners. This paper introduces a fully parallel and highly efficient flow solver called mStrand that is de- 

veloped from ground-up to operate on multi-strand meshes. The strand solver is integrated to HPCMP 

CREATE TM -AV Helios framework to simulate complex aerodynamic flows. Detailed validation of the solver 

is shown on problems with varying degrees of complexity and comparison with experimental data. A 

performance study shows that the strand solver is nearly as efficient as a structured grid solver. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The use of computational fluid dynamics (CFD) arise in many 

scientific and engineering applications. One of the most notable 

difficulties in applying CFD early in the design process is the lack 

of automation in mesh generation. With the advent of High Per- 

formance Computing (HPC), the fraction of time required for mesh 

generation and problem setup has increased significantly. Automat- 

ing this process, coupled with efficient parallel algorithms, will en- 

able turnaround times that are appropriate for engineering design. 

Traditionally, there are two primary types of flow solvers avail- 

able - structured grid solvers and unstructured grid solvers. Struc- 

tured grid solvers are efficient and allow use of higher order al- 

gorithms. The efficiency of structured grid solvers enables use of 

many more grid points to provide accurate solution. However, gen- 

erating structured grid, even while using multi-block structured 

∗ Corresponding author. 

E-mail addresses: vinod.k.lakshminarayan.ctr@mail.mil (V.K. Lakshminarayan), 

jayanarayanan.sitaraman.ctr@mail.mil (J. Sitaraman), beatrice.f.roget.ctr@mail.mil (B. 

Roget), andrew.m.wissink.civ@mail.mil (A.M. Wissink). 
1 Research Scientist. 
2 Aerospace Engineer. 

and/or overset meshes, can be extremely challenging. On the other 

hand, unstructured codes generally offer more flexibility and au- 

tomation in grid generation and problem setup for geometrically- 

complex bodies such as fuselages and hubs. But, the overall com- 

putational cost associated with such solvers to provide comparative 

level of accuracy as a structured grid solver is significantly higher. 

Therefore, in order to perform high-fidelity modeling and simula- 

tion that has potential for very high degrees of automation, an ap- 

proach is needed that achieves efficiency comparable to structured 

grid solvers but with a more automated mesh generation strategy. 

One such approach is the strand grid approach [1,2] . In this ap- 

proach, the volume mesh generation process is fully automated by 

extending a viscous-quality prismatic mesh directly from a surface 

tessellation composed of triangles, quadrilaterals, or other shapes. 

A near-body volume grid that resolves the viscous boundary layer 

is constructed by inflating the surface grid along curves that can 

be represented with few parametric quantities. These curves, re- 

ferred to as “strands”, are most commonly just straight lines, each 

represented by a pointing vector and a length (see Fig. 1 ). Strands 

extrude a short distance from the solid boundary and are clipped 

with a “clipping index”, when intersected with the adaptive Carte- 

sian grids, which cover the rest of the domain to the outer bound- 

aries. 

http://dx.doi.org/10.1016/j.compfluid.2017.02.002 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2017.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.02.002&domain=pdf
mailto:vinod.k.lakshminarayan.ctr@mail.mil
mailto:jayanarayanan.sitaraman.ctr@mail.mil
mailto:beatrice.f.roget.ctr@mail.mil
mailto:andrew.m.wissink.civ@mail.mil
http://dx.doi.org/10.1016/j.compfluid.2017.02.002


42 V.K. Lakshminarayan et al. / Computers and Fluids 147 (2017) 41–62 

Fig. 1. Strand pointing vector and clipping index. 

Strand near-body meshes combined with Cartesian off-body 

grids not only support automatic viscous mesh generation and 

adaptation but also provide a number of other advantages. First, 

both strand and Cartesian meshes possess some grid structure, 

facilitating efficient implementations of high-order accurate dis- 

cretizations and solution methods such as high-order finite differ- 

encing, line-implicit solvers, and directional multi-grid coarsening. 

Second, each strand on the strand mesh can be represented with 

minimal information such as strand direction, length etc., thus re- 

ducing the entire volume mesh description to primarily a surface 

definition. This allows use of highly efficient and highly scalable 

domain connectivity package [3] to facilitate data exchange be- 

tween the two mesh types. Third, both the strand and Cartesian 

grids easily permit use of Adaptive Mesh Refinement (AMR) en- 

abling local refinement around important flow features. Because 

the strand grid is structured in the normal direction, unstructured 

refinement is performed only on the surface which avoids many of 

the cell quality issues that often occur with frequent and persistent 

adaptation of 3D tetrahedral elements. 

Although a strand-based framework offers a potential solution 

for complete automation, a robust strand solver that can sim- 

ulate realistic engineering problems has not yet been realized. 

From the several research articles published [2,4–8] in the past, 

it is seen that one of the primary challenges in simulating com- 

plex geometries with this framework arises when handling con- 

vex corners. With a single strand per surface vertex, the regions 

near convex corners are not well resolved, which results in poor 

solver convergence and accuracy. The use of multiple strands al- 

lows better resolution of these corners, but the grid can have 

extremely small volumes that can affect the convergence of the 

flow solver. Furthermore, surface tessellations with concave-convex 

type edges/corners can pose scenarios where a single-strand di- 

rection cannot yield a valid volume grid. Having multiple strand 

provides an elegant solution to this problem. Generation of multi- 

strand type meshes has been explored in detail by Haimes et al. 

[9] . In this work, a multi-strand (mStrand) solver is developed 

from ground up to be able to handle multiple strands emanating 

from the surface as well as small volumes resulting from such a 

mesh. The solver is implemented to be fully parallel from its in- 

ception and particular emphasis is made on its robustness and 

efficiency. 

As a part of this work, mStrand is integrated with the He- 

lios framework to simulate complex aerodynamic problems. The 

Helios software [10–12] is a high-fidelity rotary-wing product of 

the HPCMP CREATE TM -AV (air vehicles) program [13] . The code 

was introduced in 2010 to provide a high-fidelity analysis ca- 

pability to the DoD for the acquisition of new rotary-wing air- 

craft and is now in routine use at several DoD sites and US He- 

licopter companies. Helios uses a dual mesh paradigm [14] as 

the basis of the CFD aerodynamics solution procedure, where a 

near-body solver is used to capture viscous flow around com- 

plex geometry, and block structured Cartesian solver [15] in the 

off-body to resolve the wake through a combination of high- 

order algorithms and adaptive mesh refinement (AMR). The PUN- 

DIT [16] domain connectivity software facilitates parallel data ex- 

change between the two mesh types as well as enables relative 

motion between the mesh systems. Coordination of the differ- 

ent codes is managed through a lightweight and flexible Python- 

based infrastructure [17,18] . Once fully tested, mStrand is intended 

to become one of the primary near-body solver in the Helios 

framework. 

The remainder of the paper is organized as follows. 

Section 2 provides a detailed description of mStrand. Section 3 per- 

forms accuracy analysis of the flow solver. This is then followed by 

a description of the mesh generation strategies used in this work 

in Section 4 . Detailed validation of mStrand in both standalone 

mode and as part of Helios framework is provided in Section 5 . 

A preliminary performance analysis of mStrand is performed in 

Section 6 , where the strand solver is compared with the perfor- 

mance of established unstructured and structured grid solvers. 

Concluding remarks are offered in Section 7 . 

2. Multi-strand (mStrand) flow solver 

2.1. Governing equations 

The Reynolds-averaged Navier–Stokes (RANS) equations in a 

general moving coordinate system in three dimensions is solved 

in mStrand. Turbulence closure is accomplished with the Spalart–

Allmaras (SA) model [19] . The RANS-SA equations may be ex- 

pressed as 

∂Q 

∂t 
+ 

∂F j 

∂x j 
−

∂F v 
j 

∂x j 
= S, (1) 

where the conserved variables, Q , inviscid fluxes, F j , viscous fluxes, 

F v 
j 
, and source term, S , are defined as 

Q = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρ

ρu i 

ρe 

ρ ˜ ν

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, F j = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρ(u j − u 

b 
j 
) 

ρu i (u j − u 

b 
j 
) + pδi j 

ρe (u j − u 

b 
j 
) + pu j 

ρ ˜ ν(u j − u 

b 
j 
) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

F v j = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

σi j 

σi j u i − q j 

η
σ

∂ ̃ ν
∂x j 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

0 

P − D + C b2 ρ
∂ ̃ ν
∂x k 

∂ ̃ ν
∂x k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (2) 

Here, ρ is the density, u i is the Cartesian velocity vector, u b 
i 

is the 

mesh velocity vector, e is the total energy per unit mass, ˜ ν is the 

turbulence working variable, p is the pressure, σ ij is the deviatoric 

stress tensor, q j is the heat flux vector, and η/ σ is the turbulent 

diffusion coefficient. The turbulent source term consists of a pro- 

duction term, P, and a destruction term D. The stress tensor is 

defined as 

σi j = 2(μ + μT ) s i j , (3) 

where μ is the dynamic viscosity, μT is the turbulent viscosity, and 

s ij is the rate of strain tensor, defined as 

s i j = 

1 

2 

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)
− 1 

3 

∂u k 

∂x k 
δi j . (4) 



Download English Version:

https://daneshyari.com/en/article/5011900

Download Persian Version:

https://daneshyari.com/article/5011900

Daneshyari.com

https://daneshyari.com/en/article/5011900
https://daneshyari.com/article/5011900
https://daneshyari.com

