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a b s t r a c t 

A key step in gradient-based aerodynamic shape optimisation using the Reynolds-averaged Navier–Stokes 

equations is to compute the adjoint solution. Adjoint equations inherit the linear stability and the stiff- 

ness of the nonlinear flow equations. Therefore for industrial cases with complex geometries at off-design 

flow conditions, solving the resulting stiff adjoint equation can be challenging. In this paper, Krylov sub- 

space solvers enhanced by subspace recycling and preconditioned with incomplete lower-upper factori- 

sation are used to solve the stiff adjoint equations arising from typical design and off-design condi- 

tions. Compared to the baseline matrix-forming adjoint solver based on the generalized minimal residual 

method, the proposed algorithm achieved memory reduction of up to a factor of two and convergence 

speedup of up to a factor of three, on industry-relevant cases. These test cases include the DLR-F6 and 

DLR-F11 configurations, a wing-body configuration in pre-shock buffet and a large civil aircraft with mesh 

sizes ranging from 3 to 30 million. The proposed method seems to be particularly effective for the more 

difficult flow conditions. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Over the past few decades, adjoint-based aerodynamic shape 

optimisation using computational fluid dynamics (CFD) has been 

widely used for the design of automobiles [1] , aeroplanes 

[2–5] and turbomachines [6–8] . It was first proposed in [9] to 

use the adjoint equations to efficiently compute the design gra- 

dient for aerodynamic shape optimisation. The method was later 

extended to configurations of increasing complexity such as the re- 

design of the wing of a transonic business jet using Euler equations 

on multiblock structured meshes [2] as well as for Navier–Stokes 

equations on unstructured meshes to capture the viscous effect on 

complex shapes [10,11] . A comprehensive strategy for developing 

and implementing discrete adjoint methods for aerodynamic shape 

optimisation problems is presented in [12] and demonstrated in a 

three-dimensional unstructured Reynolds-averaged Navier–Stokes 

(RANS) adjoint solver on several cases including a high-lift con- 

figuration and a modern transport configuration. The methodol- 

ogy was later extended in [13,14] to include multigrid in the line- 

implicit adjoint solver for better convergence and applied to the 

drag-reduction optimisation of a wing body configuration. 

With the maturing of the adjoint method, applications nowa- 

days are more focused on realistic configurations under both de- 

sign and off-design conditions. The increased complexity in both 
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geometry and flow conditions can pose significant computational 

challenges for the adjoint solver. Flow and adjoint solvers using 

well-established fixed-point iterations, either explicit or implicit, 

could have difficulty converging. One such example is reported in 

[15] for a transonic viscous case with a mesh consisting of 69,0 0 0 

points with stretched cells in the boundary layer. Similar issues are 

reported for more realistic cases in [16] , where the DLR–TAU ad- 

joint solver is used to optimise the DLR-F6 wing body configura- 

tion and the DLR-F11 high-lift configuration. For the DLR-F6 case, 

side-of-body separation near the trailing edge destabilises fixed- 

point iteration and recursive projection method (RPM) [17] is ap- 

plied to stabilise the adjoint. However, RPM fails to stabilise the 

adjoint for DLR-F11 [16] because the unstable fixed point iteration 

diverged too fast, and generalised minimal residual method (GM- 

RES) [18] was used to successfully converge the case. 

The numerical stiffness discussed above is mainly due to the 

ill-conditioned coefficient matrix in the adjoint equations. The is- 

sue could be alleviated to some extent by using an approximate 

instead of exact flow Jacobian matrix. Essentially, one is trading ac- 

curacy for solver efficiency and robustness. One typical remedy is 

to use the frozen turbulence assumption when solving the adjoint 

RANS equations as it is well known that coupling the turbulence 

equation with the mean flow equation significantly increases the 

numerical stiffness and sometimes it even destabilises the time 

marching scheme. The effect of various other approximations of 

the Jacobian matrix on the gradient accuracy and the optimisation 

results is investigated in detail in [19] . 
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Alternatively, one could adhere to the exact Jacobian matrix 

and solve the stiff adjoint equations more efficiently so that the 

resulting adjoint solution, and consequently the design gradient, 

remains accurate. To avoid the linear instability issue of any fixed- 

point iterative solver, Krylov solvers are usually preferred for solv- 

ing the stiff and marginally stable adjoint equations. It is proposed 

that the Jacobian-free Newton–Krylov method is preferred for crit- 

ical aerodynamic simulations and shape optimisation applications 

where numerical stiffness constantly causes convergence difficul- 

ties [20,21] . A few key aspects on the efficient implementation of 

the method are also highlighted to show that once properly imple- 

mented, superior efficiency and reliability can be achieved, com- 

pared with other more well-established solution methods such as 

multi-stage explicit schemes, point or block implicit procedure and 

implicit factorisation methods. The method has been successfully 

applied to solve adjoint equations arising from aerodynamic shape 

optimisaion [22] and error estimation [23] . 

Krylov solvers are also affected by the conditioning of the sys- 

tem matrix. For example, restarted GMRES could suffer from con- 

vergence stagnation for challenging problems unless m is suffi- 

ciently large, which would then result in prohibitively high mem- 

ory overhead. An obvious remedy to alleviate the memory bottle- 

neck of the Krylov solver for difficult cases is to use a stronger 

preconditioner. For example, a clean wing geometry for the com- 

mon research model at cruise condition is studied in [24] using a 

mesh with 28 million points. For this case, incomplete lower-upper 

(ILU) factorisation with fill-in level of two, i.e., ILU(2), is necessary 

to effectively precondition GMRES, which is then able to converge 

with m of 200. Had a weaker preconditioner such as ILU(0) been 

used, the Krylov solver would have required many more vectors to 

converge. 

The fundamental reason for the convergence stagnation of GM- 

RES( m ) is that the restarted subspace is often close to the previ- 

ous subspace. Generalised conjugate residual with optimal trun- 

cation (GCROT) [25] , its simplified and flexible variant [26] and 

generalised conjugate residual with deflated restarting (GCRO- 

DR) [27] have been proposed to address this shortcoming by recy- 

cling a selected subspace from one cycle to the next. The subspace 

recycling technique allows the solvers to converge without stagna- 

tion with much lower memory requirement. GCRO-DR was shown 

to be effective in both lowering the stagnation memory threshold 

and accelerating the convergence for large scale linearised aerody- 

namics analysis [28] . 

In this paper, we replace the baseline GMRES solver within the 

DLR-TAU adjoint solver with GCRO-DR. The proposed method is 

applied to solve the adjoint equations to demonstrate its effec- 

tiveness in both reducing memory overhead and accelerating con- 

vergence for solving the adjoint equations arising from industry- 

relevant cases with complex geometries under both design and off- 

design flow conditions. 

The remainder of the paper is organized as follows. The math- 

ematical formulation of the flow and adjoint equations is ex- 

plained in Section 2 . The details of the Krylov solvers are given 

in Section 3 and the preconditioning technique is discussed in 

Section 4 . The application of the proposed method to five test cases 

is presented in Section 5 . A comprehensive comparison between 

GMRES, GCROT and GCRO-DR is first given for a small, yet stiff, 

two-dimensional aerofoil case for a parameter study. Both GCRO- 

DR and GMRES are then applied to several more realistic three- 

dimensional industry-relevant cases. 

2. Nonlinear flow and adjoint solvers 

2.1. Nonlinear flow solver 

The DLR–TAU code is a CFD software package widely used as 

production code in the European aerospace industry as well as a 

research code for method development [29,30] . The RANS equa- 

tions are solved with a finite-volume discretisation on unstruc- 

tured grids with various options of spatial and temporal discreti- 

sation schemes and turbulence models. In this paper, the mean 

flow is by default discretised with the Jameson–Schmidt–Turkel 

(JST) scheme [31] with matrix dissipation [32] , unless stated oth- 

erwise. The Spalart–Allmaras model [33] is discretised using first- 

order accurate Roe scheme [34] . The nonlinear flow equations are 

pseudo time marched using the first-order backward Euler implicit 

scheme. At each pseudo time step, agglomeration multigrid is used 

to accelerate the convergence with lower-upper symmetric-Gauss–

Seidel [35] as the multigrid smoother. 

2.2. Adjoint solver 

The cost function for optimisation J := (J 1 , J 2 , . . . , J N ) 
T is a func- 

tion of the flow solution U , the coordinates of the computational 

mesh points X and the design variable α := (α1 , α2 , . . . , αM 

) T . To 

evaluate the design gradient, the cost function is linearised as 

d J 

d α
= 

∂J 

∂ α
+ v T f 

where v is the solution to the adjoint equation 

(
∂R 

∂U 

)T 

v = g (1) 

with f and g defined as 

f := −∂R 

∂ α
and g 

T := 

∂J 

∂U 

and R is the nonlinear residual vector. Note that the design vari- 

ables do not appear in the adjoint equation thus Eq. (1) needs to 

be solved only as many times as the number of cost functions. For 

aerodynamic applications, the cost functions are usually limited to 

a handful, such as lift, drag and moment, while the design vari- 

ables could be many more. The adjoint approach is therefore very 

efficient. 

The adjoint equation is solved using a Jacobian-forming 

Newton–Krylov approach. The exact flow Jacobian matrix corre- 

sponding to the second-order accurate spatial discretisation is 

computed using the hand-differentiated nonlinear residual subrou- 

tine. The Jacobian matrix is stored in block compressed sparse row 

format, with each block containing a 6-by-6 dense matrix. The Ja- 

cobian matrix is then transposed to obtain the coefficient matrix 

for the adjoint equation. Computing the Jacobian matrix and its 

transpose are done in parallel with negligible computational time 

compared to the adjoint solution time for all the cases considered 

in this work. The right-hand side for each cost function is com- 

puted using the linearised subroutine that computes the cost func- 

tion. No simplification such as frozen turbulence is used in this 

work so that an exact dual adjoint solution is solved. Once the co- 

efficient matrix and the right-hand side are formed, the resulting 

large sparse linear system of equations is then solved using ILU 

preconditioned Krylov solvers, which are explained in detail in the 

following two sections. 
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