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a b s t r a c t 

Our aim in the paper is to build a Godunov-type numerical scheme for an isentropic model of two-phase 

flows. First, computational Riemann solvers together with computing algorithms in subsonic and super- 

sonic regions are presented. Then, exact solutions of local Riemann problems are employed to build a 

Godunov-type scheme. The scheme is shown to be well-balanced in the sense that it can capture ex- 

actly stationary waves in both phases. Numerical tests show that the Godunov-type scheme possesses 

a good accuracy in the subsonic region as well as supersonic regions, where approximate solutions are 

convergent to the exact solution. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In this paper we will construct a Godunov-type numerical 

scheme for the following isentropic model of two-phase flows 

∂ t ( αg ρg ) + ∂ x ( αg ρg u g ) = 0 , 

∂ t ( αg ρg u g ) + ∂ x 
(
αg ( ρg u 

2 
g + p g ) 

)
= p g ∂ x αg , 

∂ t ( αs ρs ) + ∂ x ( αs ρs u s ) = 0 , 

∂ t ( αs ρs u s ) + ∂ x 
(
αs ( ρs u 

2 
s + p s ) 

)
= −p g ∂ x αg , 

∂ t ρs + ∂ x ( ρs u s ) = 0 , x ∈ R , t > 0 , (1.1) 

where αg , ρg , u g , p g denote the volume fraction, density, velocity, 

and pressure in the first phase of flow, called Phase I ; and αs , ρs , 

u s , p s denote the volume fraction, density, velocity, and pressure in 

the second phase of flow, called Phase II . The system (1.1) is ob- 

tained from the modeling of deflagration-to-detonation transition 

in granular materials, see [7,8] , where the flows are assumed to be 

nonreactive and isentropic. The volume fractions satisfy 

αg + αs = 1 . (1.2) 
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The first and the second equations of (1.1) describe the balance 

of mass and momentum in Phase I, while the third and the four 

equations of (1.1) describe the balance of mass and momentum in 

Phase II; the fifth equation of (1.1) , called the compaction dynamics 

equation , represents the evolution of the volume fractions. Observe 

that the third and the fifth equations of (1.1) and the Eq. (1.2) yield 

∂ t αg + u s ∂ x αg = 0 . (1.3) 

The model (1.1) contains nonconservative terms, which reflect 

the exchanges between the two phases. We will see that it can be 

written as a hyperbolic system of balance laws in nonconservative 

form. Theoretically, weak solutions of this kind of system can be 

understood in the sense of nonconservative product , see [17] . Non- 

conservative terms in multi-phase flow models, and more gener- 

ally, in nonconservative systems of balance laws, often derive very 

hard obstacle for numerical approximations of the solutions. In 

particular, the errors may not tend to zero as the mesh sizes go to 

zero for standard numerical schemes. Therefore, theoretical study 

as well as suitable numerical schemes for this kind of systems have 

been very interesting and challenging topics and have attracted the 

attention of many authors. 

Recently, a robust numerical scheme was constructed for a 

model of two-phase flows, which is related to the model (1.1) , see 

[40] . This scheme was shown to give a reasonable approximations 
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and possesses many interesting properties: it preserves the posi- 

tivity of the volume fractions in both phases, it can capture equi- 

librium states, preserves the positivity of the density, and satis- 

fies the numerical minimum entropy principle in the first phase 

(the gas phase). However, numerical tests in [40] also showed that 

the scheme still provide approximate solutions which convergence 

to a function slightly different from the exact solution in some 

cases. In this work, we will build a scheme which can handle 

this problem: approximate solutions are convergent to the exact 

solution in all test cases observed. Unlike most existing schemes 

which treat the nonconservative terms via an intermediate com- 

puting step, or by intermediate states, a Godunov-type scheme can 

deal with the nonconservative terms by exact solutions of the lo- 

cal Riemann problems at grid nodes. Therefore, the difficulty lies 

on how to construct exact Riemann solutions of the model. Fortu- 

nately, this issues has recently been resolved in [36,39] , where the 

Riemann problem for the model (1.1) was critically investigated. 

Motivated by these works, we will describe computational exact 

Riemann solutions, and then we build up a Godunov-type scheme 

relying on these computational exact solutions of local Riemann 

problems at grid nodes for (1.1) for initial data not only on the 

subsonic region, but also in the supersonic region. Then, we will 

prove that the scheme is well-balanced in the sense that it can cap- 

ture exactly stationary contact waves in both phases. This means 

that 

U 

n 
j = U 

0 
j , 

for all integer j and for all n = 1 , 2 , 3 , . . . , where U 

n 
j 

is the approxi- 

mation of the exact solution value U ( x j , t 
n ). Furthermore, we pro- 

vide numerical tests in both subsonic and supersonic regions. In 

each of these tests, we compute the errors for different mesh sizes. 

It is shown that the errors tend to zero as the mesh sizes go to 

zero in all the test. This indicates that the approximate solutions 

converge to the exact solution. 

There have been many works in the literature on hyper- 

bolic systems of balance laws in nonconservative form. The- 

oretical study for this kind of system was carried out in 

[17,22,25,26] . The Riemann problem for various hyperbolic sys- 

tems of balance laws in nonconservative form were consid- 

ered in [4,18,20,21,27,28,30,32,36,38,39] . Godunov-type schemes 

for various hyperbolic systems of balance laws in noncon- 

servative form were studied in [2,14,29,33,34] . Various nu- 

merical schemes for two-phase flow models were considered 

in [1,3,9,10,13,15,16,19,31,35,37,40–42] . Well-balanced schemes for 

other nonconservative systems were studied in [5,6,11,12,23,24] . 

The organization of this paper is as follows. In Section 2 we will 

review basic properties of the system (1.1) . Section 3 is devoted 

to the constructions of computational exact solutions of the Rie- 

mann problem for (1.1) . In Section 4 we will construct a Godunov- 

type numerical scheme for (1.1) . Numerical tests are presented in 

Section 5 . Finally, we will present conclusions and discussions in 

Section 6 . 

2. Preliminaries 

2.1. Characteristic fields 

Throughout, we assume for simplicity that the fluid in each 

phase is isentropic and ideal, where the equation of state is 

p g = p g ( ρg ) = κg ρg 
γg , p s = p s ( ρs ) = κs ρs 

γs , κg , κs > 0 , γg , γs > 1 . 

The system (1.1) can be re-written as a system of balance laws in 

non-conservative form as 

∂ t U + A (U ) ∂ x U = 0 , (2.1) 

where U = (U g , U s , αg ) T , U g = ( ρg , u g ) , U s = ( ρs , u s ) and 

A (U ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

u ρg 0 0 

ρg (u g −u s ) 
αg 

p ′ g ( ρg ) 

ρg 
u g 0 0 0 

0 0 u s ρs 0 

0 0 

p ′ s ( ρs ) 
ρs 

u s 
p g −p s 
αs ρs 

0 0 0 0 u s 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where (.) ′ denotes the derivative of the function under considera- 

tion. The characteristic equation of the matrix A (U ) is given by 

(u s − λ) 
(
(u g − λ) 2 − p ′ g ( ρg ) 

)(
(u s − λ) 2 − p ′ s ( ρs ) 

)
= 0 . 

Thus, we obtain five real eigenvalues 

λ1 (U ) = λ1 (U g ) = u g −
√ 

p ′ g ( ρg ) , 

λ2 (U ) = λ2 (U g ) = u g + 

√ 

p ′ g ( ρg ) , 

λ3 (U ) = λ3 (U s ) = u s −
√ 

p ′ s ( ρs ) , 

λ4 (U ) = λ4 (U s ) = u s + 

√ 

p ′ s ( ρs ) , λ5 (U ) = λ5 (U s ) = u s . (2.2) 

The corresponding right eigenvectors can be chosen as 

r 1 (U ) = μ
(

− ρg , 
√ 

p ′ g ( ρg ) , 0 , 0 , 0 

)T 
, 

r 2 (U ) = μ
(
ρg , 

√ 

p ′ g ( ρg ) , 0 , 0 , 0 

)T 
, 

r 3 (U ) = ν
(
0 , 0 , −ρs , 

√ 

p ′ s ( ρs ) , 0 

)T 
, 

r 4 (U ) = ν
(
0 , 0 , ρs , 

√ 

p ′ s ( ρs ) , 0 

)T 
, 

r 5 (U ) = 

(
−(u g − u s ) 

2 αs ρg p g , (u g − u s ) αs p 
′ 
g p 

′ 
s , (p s − p g ) αg 

× ((u g − u s ) 
2 − p ′ g ) , 0 , ((u g − u s ) 

2 − p ′ g ) αg αs p 
′ 
s 

)
T , (2.3) 

where 

μ = 

2 

√ 

p ′ g ( ρg ) 

p ′′ g ( ρg ) ρg + 2 p ′ g ( ρg ) 
, ν = 

2 

√ 

p ′ s ( ρs ) 

p ′′ s ( ρs ) ρs + 2 p ′ s ( ρs ) 
. 

It is not difficult to check that the eigenvectors r j (U ) , j = 

1 , 2 , 3 , 4 , 5 are linearly independent. Thus, the system is hyperbolic. 

Furthermore, it holds that 

λ3 (U s ) < λ5 (U s ) < λ4 (U s ) . 

It is interesting that λ5 ( U s ) may coincide with either λ1 ( u g ) or 

λ2 ( u g ) on a certain hyper-surface of the phase domain, called the 

sonic surface or resonant surface . We call the supersonic region to be 

the one in which 

| u g − u s | > c := 

√ 

p ′ g ( ρg ) , (2.4) 

the subsonic region is the one in which | u g − u s | < c. To illus- 

trate these regions, we consider the projection of the hyper-plane 

u s = u s ∗ of the phase domain, for an arbitrarily fixed u s ∗ , in the 

( ρg , u g ) −plane, see Fig. 1 . 

G 1 ( u s ∗) = { ( ρg , u g ) : u g − u s ∗ > c} , 
G 2 ( u s ∗) = { ( ρg , u g ) : | u g − u s ∗| < c} , 
G 3 ( u s ∗) = { ( ρg , u g ) : u g − u s ∗ < −c} , 
C ±( u s ∗) = { ( ρg , u g ) : u g − u s ∗ = ±c} . (2.5) 

On the other hand, it is not difficult to verify that 

∇λ j · r j = 1 , j = 1 , 2 , 3 , 4 , 

∇λ5 · r 5 = 0 , (2.6) 

so that the first, second, third, fourth characteristic fields ( λj , r j ), 

j = 1 , 2 , 3 , 4 , are genuinely non-linear , while the fifth characteristic 

field ( λ5 , r 5 ) is linearly degenerate . 
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