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a b s t r a c t 

Palm statistics (so called after the Swedish mathematician Conny Palm (1907–1951)) are the statistics 

of a random quantity conditioned by another. Such statistics have already been used in the turbulence 

community, but not always adequately. Special care is indeed needed to correctly define these statistics 

in order to avoid biasing effects. The first part of this paper is devoted to the analysis of these peculiari- 

ties. Different characterizations of the Palm statistics, at directional and contour crossings are introduced 

afterwords. It is found that the level-crossing frequency and likewise the turbulence activity in the span- 

wise direction is larger than in the streamwise direction, and that the wall normal vorticity is more 

active than the streamwise one. The statistics of the local production conditioned either by the level 

crossings of the streamwise u or the wall normal local velocity v in a fully developed channel flow are 

analyzed by using direct numerical simulations data performed in large computational boxes similar to 

Hoyas&Jiménez (Phy. Fluids, 011,702, 2006). The Karman number (based on the shear velocity ū τ , chan- 

nel half width h and kinematic viscosity ν) ranges from R e τ = 180 to R e τ = 1100 . The aim here is first to 

determine the appropriate scaling of the conditional quantities that directly enter in the Palm production 

ensemble averages, and secondly, to analyze the effects of large scale and very large scale motions (LSM, 

VLSM) on these statistics. It is well known that VLSM transport a considerable amount of the shear stress, 

but the direct dynamic role of the latter in the production process remains still unclear. The structures 

that maintain coherence in the Palm statistics, in a universal Reynolds number independent way, scale 

with inner variables ν and ū τ in the layer bounded by y < 50 ν/ ̄u τ from the wall. They are as long as 

�x = 50 0 0 ν/ ̄u τ for the v -level crossings and �x = 20 0 0 ν/ ̄u τ for the u −level crossings. Further away, in 

the 50 ν/ ̄u τ < y < 200 ν/ ̄u τ sublayer, the coherence streamwise lengths scale with outer variables as 3 h , a 

value which is typically the upper bound of the streamwise extend of vortex packets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The crucial role played by intermittent streamwise u and wall 

normal v velocity components in the production process near the 

wall is well known since the discovery of coherent structures in 

the early 1960 ′ s (Kline et al., [1] , and reported as early as the 

1970 s by Corino and Brodkey [2] , Willmarth and Lu [3] and Lu 

and Willmarth [4] . Intense events associated with the buffer layer 

penetrate deep into the outer flow (ejections) or into the viscous 

sublayers (sweeps) and induce high wall shear stress (Orlandi and 

Jiménez [5] ). Most of the production of turbulent energy occurs 

during these intense events. The latter are best characterized by 

splitting u − v into the quadrants [3] , but a simpler way to detect 

ejections and sweeps is to consider events when u passes through 

a threshold, which is roughly equal to its local rms value (Bogard 

and Tiederman [6] ). The first question that arises is how much an 
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event characterized by a fixed value of u contributes to the pro- 

duction. The resulting conditional expected values as a function of 

the level of u allow, along with other information, a rigorous check 

of some models relating to the joint probability density function 

of u and v such as the joint Gaussianity. We will show in this pa- 

per that these statistics also allow a detailed investigation of the 

Reynolds number dependence induced by outer eddies, in a more 

refined way than provided by other methods such as the spectral 

analysis. 

Consider a stochastic stationary signal u ( t ) with zero mean 

and standard variation σu = 

√ 

uu , a constant � u , the derivative 

u ′ (t) = d u/d t , the level crossings u (t) = � u σu , and the number 

of level crossings N � u ( T ) in an interval of time T . This problem 

has a long story starting with Rice [7,8] . The level crossing fre- 

quency f � u = N � u /T is given by the conditional expectation f � u = 

p( u = � u σu ) E{ | u ′ | | u (t) = � u σu } , where p ( u ) is the probability den- 

sity and E stands for the ensemble averaging. This expression ap- 

plies to any signal providing that it is mean-zero separable sta- 

tionary (Ylvisaker, [9] ). The zero-crossings frequency of a Gaussian 
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signal is noticeably simpler, with f 0 u G 
= 

√ 

u ′ 2 /πσu . The Liepmann 

scale associated with f 0 u is Li = 1 / π f 0 u (Liepmann [10] ) and it is 

equal to the Taylor scale for a Gaussian signal. Sreenivasan et al. 

[11] questioned this equivalence in wall- bounded turbulent flows 

wherein the Liepmann and Taylor scales were found to concur 

fairly well. There is also some similarity between the level crossing 

frequency of velocity fluctuations in the inner layer and the dis- 

tribution f � u G 
= f 0 u exp ( −� 2 u / 2 ) inferred from the Gaussian model 

(Tardu, [12] ). 

The cumulative probability distribution of time intervals P ( τ ) 

separating successive level crossings is a problem that remains 

unsolved even for Gaussian processes (Blake and Lindsey, [13] ). 

First of all, the hypothesis that successive zero crossing intervals 

of Gaussian processes are independent is incorrect. In other words 

P ( τ ) deviates from Poissonianity for some normal signals. Kailas- 

nath and Sreenivasan [14] noticed that P ( τ ) of zero crossings of 

streamwise velocity fluctuations u exhibits two exponentials from 

which a small and large time scale can be extracted. The large time 

scale is independent of the Reynolds number while the small one 

scales as Re −1 / 2 
λ

where Re λ is the Reynolds number based on the 

Taylor scale λ. The wall normal velocity v and the Reynolds shear 

stress −u v have just one time scale for reasons that are not well 

established. The dual time scales relevant to zero-crossings of u are 

also found in level crossings different from zero. This characteris- 

tic has so far been used to identify packets of vortical structures 

[15,16] . The � v � = 0 crossings of the wall normal v velocity fluctua- 

tions and the shear stress −u v have only one time scale. 

Palm distributions describe the statistics of a given quantity 

conditioned by level-crossings of another [17] . Quantities of inter- 

est are, amongst others, the probability density of a flow quantity 

q and its moments as a given component of velocity goes through 

an assigned threshold L . Care should be taken in applying these 

notions to turbulence. For instance, it has been argued that the 

zero-crossings of streamwise velocity should largely contribute to 

the isotropic part of dissipation in wall turbulence [14] . In this par- 

ticular case the local flow quantity is q = ε iso = 15 ν( ∂ u 
∂ x 

) 2 , where ν
is the viscosity and x is the streamwise coordinate. Consider the 

u ( x, y, z ; t ) velocity component and to simplify, suppose that it 

is Gaussian. One can determine the zero-crossings of u along x 

for fixed time t , and coordinates y and z . The number of samples 

in an interval [0, L x ] is N 0 x = L x 

√ 

( ∂ u/∂ x ) 2 /π σu in this case [7] . 

The mean dissipation ε iso conditioned by u = 0 is obviously not 

the conventional expected E mean ε iso = E( ε iso | u = 0 ) , because the 

number of samples N 0 x is not statistically independent of ɛ iso . The 

second example is the local production q = P = −u v ∂ ̄U 
∂y 

where v 

and Ū are respectively the fluctuating wall normal, and the mean 

velocity and y is the wall normal coordinate. For similar reasons, 

the mean production at u level crossings is a priori not E(P ) = 

−� u σu 
∂ ̄U 
∂y 

E( v | u = � u σu ) . Similar problems are of profound physical 

and theoretical interest. There is clearly an undeniable need to re- 

visit this topic, because there is, in our opinion, a lack of preci- 

sion and adequate formulation of level-crossing properties in tur- 

bulence related past research. Preliminary results on dissipation 

statistics at velocity level crossings have been reported in Tardu 

[18] . This paper is focused on the production characteristics in 

wall- bounded flows. 

The paper is organized as follows. The Palm statistics are in- 

troduced in a simple way in 2.1. A detailed analysis of the level- 

crossings statistics is conducted in the Appendix through an origi- 

nal way. Different characterizations such as directional level cross- 

ings and contour crossings are introduced afterwords. Direct nu- 

merical simulations (DNS) performed in a turbulent channel flow 

in large computational domains are briefly described in Section 3 . 

Some preliminary characteristics of the Palm statistics related to 

Fig. 1. Level crossings of the signal u marked by the random quantity q . 

the local production are given in Sections 4.1 to 4.4 . The latter are 

an overview of the results presented in detail in Tardu and Bauer 

[19] and are briefly summarized here with additional comments, to 

make the paper self-contained. The production characteristics con- 

ditioned by fixed amplitudes of the spanwise velocity fluctuations 

have recently been reported in Tardu [20] . The main topic of the 

present investigation is the scaling of the conditional local produc- 

tion statistics and the Reynolds number effects. Thus, the last sec- 

tions of the paper deal with the effect and the repercussion of the 

large-scale passive structures on the ensemble averaged velocities 

conditioned by level crossings. 

2. Level crossing statistics 

2.1. One dimensional signals 

Palm averages are conditional statistics. Consider two stochastic 

stationary signals u ( t ) and q ( t ). Fig. 1 schematically shows these 

processes. The aim is to determine the statistics of q ( t i ) condi- 

tioned by the events u ( t i ) = � u σu . One is at first tempted to de- 

termine the conditional mean q � ub by computing simply 

q � u b = 

∑ N �u 

i =1 
q ( t i ) | u = � u σu 

N �u 
= E { q | u = � u σu } (1) 

i.e. by collecting all the q ( t i ) when the signal u crosses the level 

� u σ u , and performing the statistics over this specific data set. We 

recall that E stands for the expected value and | refers to the con- 

ditional event. This procedure is correct if and only if the number 

of samples N � u is statistically independent of the quantity q . How- 

ever, as already indicated in the Section 1 , N � u in an interval [0, 

T ] depends on the absolute derivative of | u ′ | = | d u/d t | and is given 

by: 

N � u = T f � u = T p ( u = � u σu ) E 
{∣∣u 

′ ∣∣ | u = � u σu 

}
(2) 

Consequently, if q ( t ) and | u ′ | are correlated, then N � u depends 

on the quantity that is of interest and the Eq. (1) leads to bi- 

ased moments. Thus, the average q � u at level-crossing points is the 

normalized mean of q weighted by the absolute velocity derivative, 

i.e. 

q � u = 

E { | u 

′ | q | u = � u σu } 
E { | u 

′ | | u = � u σu } = 

∑ N �u 

i =1 | u 

′ | ( t i ) q ( t i ) | u = � u σu ∑ N �u 

i =1 | u 

′ | ( t i ) | u = � u σu 

(3) 
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