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a b s t r a c t 

A new geometry and topology parameterisation method is presented which is based on creating a pa- 

rameterisation grid of cells and reconstructing surfaces from the fraction of the cell volume defined to 

be solid, with the volume fractions acting as design variables. This method is able to include topological 

changes alongside fine-level geometric control, and therefore offers a significant increase in flexibility. In 

this work, the geometric capabilities of the method are confirmed by successfully constructing a variety 

of surfaces, using both arbitrary object outlines and aerofoil geometries. The method is then used in a 

range of optimisation problems covering the design of a coastal defence, increasing fluid damping within 

an oscillating box by the addition of baffles, and design of a multi-body configuration for minimum drag 

in supersonic flow. These problems demonstrate the benefits of a parameterisation for fluids modelling 

that is capable of topological changes and which can be used with global search as well as gradient-based 

methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In optimisation problems a key challenge is how best to rep- 

resent trial geometries in a way that maximises coverage of the 

design space and which promotes good convergence of the opti- 

miser. Methods of representing geometries are often referred to as 

shape parameterisations as the geometry is represented by a vec- 

tor of parameters; it is these parameters the optimisation method 

subsequently adjusts to produce new geometries. This process and 

the links between the methods are shown in Fig. 1 . 

Having the ability to change topology is a desirable but uncom- 

mon feature for a parameterisation scheme. Enabling topological 

change in an optimisation process is desirable because it allows 

consideration of designs that would not otherwise be accessible 

[1] . In the case of high lift configurations for aircraft or racing cars, 

for example, it is not obvious how many lifting elements may be 

optimal. Equally, the aerospike design used on Trident II missiles 

[2,3] would be very difficult to obtain without a parameterisation 

capable of substantial geometric and/or topological change. 

The objective of the work presented is to define a parameteri- 

sation scheme that implicitly handles topological change alongside 

fine-level geometric control. Following a review of existing param- 
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eterisation methods in Section 1.1 a new parameterisation method 

is proposed in Section 2 . The method is then applied to a set of ge- 

ometry reconstruction problems in order to explore the accuracy 

and flexibility of the parameterisation, before testing on optimi- 

sation problems including the design of minimum drag configura- 

tions in supersonic flow, the design of a coastal defence and design 

of baffles to increase damping in an oscillating tank. 

1.1. Existing parameterisation methods 

Parameterisation raises two fundamental and interlinked prob- 

lems; first, how to devise a geometry method that designs shapes 

suitable for the chosen optimisation, and second, how to have con- 

fidence that a sufficient but not excessive number of design vari- 

ables have been introduced. 

A parameterisation is a method of representing a geometry by 

means of a vector of design variables, and these methods can be 

broadly split between two groups. The first group seeks to con- 

struct shapes from empty space, while the second aims to deform 

an already existing geometry. Although distinctions can blur, sur- 

face point control, level sets and descriptive function approaches 

are constructive, while control point techniques are deformative 

(an exception to this is the way in which NURBS can be used to 

both construct surfaces from control points, and then also to de- 

form them through motion of those control points). It is clear that 

a constructive approach may usually be linearised to provide a de- 

formative route providing the initial shape may be encoded, but 
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Fig. 1. Diagram of interaction between design variables, x , geometry parameterisa- 

tion scheme, generated shape and an optimisation method. 

there is no guarantee a deformative technique will be able to con- 

struct a shape from scratch. 

Once a parameterisation has been selected, it is possible to con- 

sider design space (dimension) reduction (DSR) in an effort to en- 

sure the number of design variables is minimised. The first ap- 

proach, proposed by Diez et al. [4,5] , is to randomly sample a wide 

range of geometries constructed via the chosen parameterisation 

and use a Karhunen-Loève expansion (although other matrix ap- 

proaches may also be used [6] ) to find a series of eigenvectors 

and values ordered in terms of decreasing importance. From this, a 

subset of the ‘early’ eigenvectors may then be used as design vari- 

ables, and this approach has been applied for marine hull design 

[4,5] using free-form deformation. A second approach is to take 

a representative geometric library and parameterise this with any 

method through a fitting procedure, before interpolating the cal- 

culated parameter values against a chosen, smaller set of variables 

of interest. For example, an aerofoil library might be parameterised 

using CST [7] , and then the CST parameters interpolated in terms 

of lift coefficient and thickness to chord ratio, as demonstrated 

by Sóbester and Powell [8] . It is an important result of these ap- 

proaches that even if a parameterisation initially introduces too 

many design variables, these can later be reduced to an accept- 

able level through DSR. It is therefore not compulsory to address 

accuracy (ability to reconstruct any shape) and efficiency (ability 

to reconstruct using a small number of design variables) simulta- 

neously, although clearly a link will always exist. 

The goal in this section is to illustrate where an approach han- 

dling topological change as part of the parameterisation can fit in 

to the existing tool box of methods, so the relative merits of ex- 

isting methods and their most important results shall now be con- 

sidered. 

1.1.1. Surface points as design variables 

A natural approach is to consider moving every surface point, so 

that the design variables are simply the surface point locations in 

x,y,z. Doing so ensures that the complete design space is retained, 

as any surface can be represented (in a discrete sense) if all surface 

points are free to move. 

This has been applied extensively in aerodynamic optimisation 

[9–13] . The gradient of the objective function must however be 

smoothed in order to ensure smooth surfaces are generated, as 

with such a high number of design variables is it easy to produce 

noisy surface shapes. It can also be demonstrated on a test exam- 

ple, such as the brachistochrone problem, that in the absence of a 

smoothing operation surface quality will progressively deteriorate 

[10] . 

The benefit of being able to represent a large design space cre- 

ates difficulties as high dimensional spaces are time consuming to 

explore, with slow optimiser convergence being common, and it is 

imperative to use an adjoint route for gradient computation. Us- 

ing this parameterisation it is also not clear how to create topo- 

logical changes moving from the starting surface in the absence of 

any other descriptive mechanism; furthermore, including topologi- 

cal variation in an adjoint frame work would be difficult. Topologi- 

cal derivatives have been defined for general optimisation [14] , but 

not applied with a surface point parameterisation. 

1.1.2. Level sets 

Level sets represent the boundary of a geometry as a level set of 

a function and their use in geometry optimisation is reviewed by 

van Dijk et al. [15] . For reasons of convenience the zero level set is 

usually chosen as this can be detected by a sign change. The use of 

level sets as a method of representing fronts was first suggested by 

Osher and Sethian [16] with applications to tracking the behaviour 

of propagating flame fronts, and this led naturally into Sethian and 

Wiegmann’s [17] work using level sets to parameterise a geome- 

try for optimisation. The level set method operates by evolving the 

level set function in a time like manner using the Hamilton–Jacobi 

equation such that at each time step a new geometry is produced 

as the position of the zero level set changes. The evolution of the 

level set function is controlled by a velocity term which acts nor- 

mal to the surface and typically the level set function is initialised 

as a signed distance function from the initial surface geometry. 

Level set based optimisation has been largely applied to steady 

state structural problems and often requires an adjoint solution. 

This is especially restrictive when considering the use of an op- 

timisation scheme with a general solver as code specific modifica- 

tions must be made to solve both the adjoint problem along with 

the original objective function evaluation. 

Sethian and Wiegmann [17] calculated velocity directly from 

the local stress such that the boundary moves to remove the max- 

imum amount of material subject to constraints; this approach 

was applied to the optimisation of a cantilever beam. Wang et al. 

[18] found velocities by using the adjoint method to calculate the 

sensitivity of the objective function to the geometry defined by 

the level set; this sensitivity was then used to define the level 

set velocity. Allaire et al. [19] present similar results but, as with 

methods described below in Section 1.1.5 , used low density mate- 

rial rather than a true absence in regions defined as outside the 

part. Allaire et al. [20] show that level sets evolved by the veloc- 

ity method are unlikely to add new holes and so create a different 

topology; this can be improved by the inclusion of the topological 

derivative [14] . Rather than move a boundary defined by a level 

set, Wei and Wang [21] define a piecewise constant level set func- 

tion which has the advantage of easier topology changes through 

creation of holes. 

In addition to the evolution based level set parameterisation, 

a less common explicit level set approach has been used in op- 

timisation such as that suggested by Kreissl et al. [22] where 

weighted radial basis functions (RBFs) were used to represent the 

level set function with the weights acting as design variables. 

Kreissl et al. combined this parameterisation with a lattice Boltz- 

mann flow solver to optimise pipe geometry for minimum pres- 

sure loss. This method allows standard gradient based solvers to 

be used with a level set approach but a large number of design 

variables are needed (on the order of 200) to produce a simple fi- 

nal geometry and as presented the method cannot be used to pro- 

duce solid regions in areas that were previously entirely void. Fur- 

ther work by Kreissl and Maute [23] developed a framework based 

on the extended finite element method (XFEM) which permitted 

changing topologies to be included in an optimisation based on 

a Navier–Stokes solver, as XFEM permits discontinuities in shape 

functions. 

1.1.3. Control point methods 

An intuitive parameterisation is to have a surface constructed 

by joining a set of control points on that surface [24] . However, 
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