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a b s t r a c t 

The lattice Boltzmann equation (LBE) is an efficient kinetic method for particulate flows. Two key issues 

should be addressed in the implementation of LBE for such systems, i.e., how to treat the curved surface 

of a solid particle on a uniform Cartesian grid, and how to initialize the state of a fresh node coming 

from the moving particle. These two key issues are usually considered separately in previous studies. In 

this work, we propose an efficient unified iterative scheme (UIS) to treat both the issues simultaneously. 

On one hand, the present method provides a consistent treatment for both the boundary nodes and 

fresh nodes, on the other hand, to enforce the no-slip boundary condition and decrease the inconsistency 

between the constructed distribution functions and those evolutionary ones, an enforced iteration (EI) is 

employed. To describe the inconsistency quantitatively, the inconsistency degree is defined. Simulations of 

several typical problems are conducted, and the numerical accuracy, computational efficiency and ability 

to treat moving boundaries are validated. Compared with the combination method, the inconsistency 

degree around the moving body and spurious force fluctuation are suppressed significantly due to the 

improved consistency. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particulate flows are of great importance in numerous indus- 

trial and natural systems, such as fluidized beds, lubricated trans- 

port, fluvial erosion, river sediment resuspension and sand storms 

[1,2] . As a promising numerical technique in the computational 

fluid dynamics (CFD), the lattice Boltzmann method (LBM), which 

is based on the evolution of discrete distribution functions of the 

fluid molecules, has proven to be an efficient and robust method 

for simulating particulate flows in the past two decades [3–13] . 

In LBM, the fluid-solid interaction is represented via the boundary 

condition on the solid surface, and therefore it is critical to set up 

an accurate rule to realize the boundary condition in terms of the 

distribution functions [14,15] . Another key point for moving bound- 

aries is how to treat the fresh fluid nodes that move into the fluid 

from the solid body due to the movement of the solid body. To 

construct the unknown distribution functions at the fresh nodes, a 

refilling algorithm is needed. These two crucial issues have been 

studied widely in previous studies [12,13,16–26] . 

For the first key problem, i.e., realizing the boundary condi- 

tion on the solid surface, Ladd made the first attempt by repre- 

senting the surface with a set of mid-points of the links across 
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the solid surface, on which the bounce-back rule is imposed to 

realize the no-slip boundary condition [3,4] . It is clear that in 

Ladd’s method the physical surface of the particle is approximated 

by a zigzag shape [2,20] . As pointed out in [7,27] , such a treat- 

ment leads to a Knudsen layer near the particle surface and the 

particle size should be rescaled. Consequently, the overall accu- 

racy of Ladd’s method is of first-order. To preserve the geomet- 

ric integrity and improve the computational accuracy, a number of 

curved boundary conditions have been developed [14–21] . For in- 

stance, Filippova et al. [16] presented a boundary condition which 

provided a second-order accurate treatment for curved boundaries. 

However, the numerical stability of their method is far from sat- 

isfactory. To improve the numerical stability, Mei et al. [17] pre- 

sented an improved version. Bouzidi et al. [18] proposed a differ- 

ent but simpler boundary condition for curved boundaries based 

on the interpolation bounce-back scheme, while Guo et al. [19] de- 

veloped a non-equilibrium extrapolation (NEE) method, in which 

the distribution functions at a solid node are decomposed into 

their equilibrium and non-equilibrium parts. Recently, Yin et al. 

[14] proposed an improved bounce-back scheme, in which the ve- 

locity at the mid-point of the link is used, instead of the bound- 

ary velocity in Ladd’s method. For the above curved boundary 

conditions, different interpolation schemes are employed based 

on the fraction of the intersected link in the fluid region, which 

may induce some unphysical oscillations near the solid surface. To 
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overcome the abrupt discontinuity in the boundary condition, Yu 

et al. [20] proposed a unified interpolation bounce-back scheme, 

which is applicable in the whole range with improved numeri- 

cal stability. Although the boundary conditions based on the in- 

terpolation bounce-back scheme are of second-order accuracy, the 

relative errors are claimed to be viscosity-dependent [21,28] . To 

conquer the drawback, Ginzburg et al. [21] proposed a viscosity- 

independent multireflection boundary condition. 

For the second key problem, i.e., the refilling of fresh nodes 

coming from the moving solid body, a number of algorithms have 

been developed [12,13] . Luo et al. [22] presented a second-order 

extrapolation method along a specified direction to initialize the 

fresh node. Li et al. [23] extrapolated the unknown distribution 

functions at the fresh node with those averaged ones at its sur- 

rounding fluid nodes. Mei et al. [24] introduced a consistent initial- 

ization method, in which the density field is constructed related to 

a known velocity field. Later, Caiazzo et al. [25] proposed a sim- 

ple refilling algorithm based on the non-equilibrium extrapolation 

method. Recently, Chen et al. [26] presented a local evolutionary 

iteration method, in which the local collision and streaming are 

conducted to update the distribution functions, density and veloc- 

ity at the fresh node. 

For moving boundaries, boundary conditions and refilling algo- 

rithms are recognized as different topics in previous studies. How- 

ever, the essences of these two seemingly different problems are 

the same, that is, how to specify the unknown distribution func- 

tions at certain nodes near the solid surface. The previous bound- 

ary conditions and refilling algorithms constructed from a sepa- 

rate manner may induce some inconsistency. Therefore, a consis- 

tent treatment of these two key problems is desirable, which is 

the aim of the present work. 

The rest of this paper is organized as follows. Section 2 briefly 

describes the lattice Boltzmann method, and Section 3 presents the 

consistent method for moving boundaries. In Section 4 , the numer- 

ical accuracy, computational efficiency and ability to treat moving 

boundaries of the present method are validated by several typical 

problems, and Section 5 concludes the paper. 

2. Lattice Boltzmann method 

Instead of solving the Navier–Stokes (NS) equations directly, 

LBM is a mesoscopic method derived from the microscopic Boltz- 

mann equation, whose evolution equation is 

f i (x + c i δt, t + δt) − f i (x , t) = �i ( f ) , (1) 

where f i ( x , t ) is the distribution function at position x and time t 

for particles with velocity c i along the i th direction of the lattice, 

�i ( f ) is the discrete collision operator, and δt is the time step. In 

practice, the evolution of the distribution functions is decomposed 

into two steps, i.e., collision step 

f ′ i (x , t) = f i (x , t) + �i ( f ) , (2) 

and streaming step 

f i (x + c i δt, t + δt) = f ′ i (x , t) , (3) 

where f ′ 
i 
(x , t) is the post-collision distribution function. 

Due to its superior numerical stability [29,30] , the multi- 

relaxation-time (MRT) model is employed in this work, in which 

the collision operator is 

�i ( f ) = −(M 

−1 SM) i j ( f j − f eq 
j 

) , (4) 

where M is the transform matrix, S is the diagonal relaxation ma- 

trix, and f 
eq 
i 

is the equilibrium distribution function (EDF), which 

is a function of the macroscopic quantities. Note that the Einstein 

summation notation is adopted here. 

In the present study, the D2Q9 (2-dimension and 9-velocity) 

model [31] is adopted, in which the transform matrix M is 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 1 1 1 1 1 

−4 −1 −1 −1 −1 2 2 2 2 

4 −2 −2 −2 −2 1 1 1 1 

0 1 0 −1 0 1 −1 −1 1 

0 −2 0 2 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

0 0 −2 0 2 1 1 −1 −1 

0 1 −1 1 −1 0 0 0 0 

0 0 0 0 0 1 −1 1 −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (5) 

and the relaxation matrix S is 

S = diag(τρ, τe , τε, τ j , τq , τ j , τq , τs , τs ) 
−1 , (6) 

where τρ and τ j are related to the conserved moments, while the 

other relaxation times are related to the non-conserved moments. 

The EDF is defined as 

f eq 
i 

(ρ, u ) = w i ρ

[
1 + 

c i · u 

c 2 s 

+ 

(c i · u ) 2 

2 c 4 s 

− u · u 

2 c 2 s 

]
, (7) 

where ρ is the fluid density, u is the fluid velocity, w i is the weight 

parameter given by 

w i = 

{ 

4 / 9 for i = 0 , 

1 / 9 for i = 1 , 2 , 3 , 4 , 

1 / 36 for i = 5 , 6 , 7 , 8 , 

(8) 

and the particle velocity c i is 

c i = 

{ 

(0 , 0) for i = 0 , 

c( cos [(i − 1) π/ 2] , sin [(i − 1) π/ 2]) for i = 1 , 2 , 3 , 4 , √ 

2 c( cos [(2 i − 1) π/ 4] , sin [(2 i − 1) π/ 4]) for i = 5 , 6 , 7 , 8 , 

(9) 

where c = δx/δt is the lattice speed, δx is the grid spacing, and 

c s = c/ 
√ 

3 is the speed of sound. The fluid density ρ and velocity u 

are obtained by 

ρ = 

∑ 

i 

f i , ρu = 

∑ 

i 

c i f i . (10) 

The fluid pressure is defined as p = ρc 2 s , and the kinematic vis- 

cosity is related to the relaxation time τ s as ν = c 2 s (τs − 1 / 2) δt . 

3. The unified iterative scheme for moving boundaries 

As sketched in Fig. 1 , the lattice nodes are classified into two 

categories by the solid surface 	, i.e., fluid nodes and solid nodes. 

The former is occupied by the fluid while the latter is covered 

by the solid body. Due to the movement of the solid body, the 

fluid nodes near the solid surface are further classified into two 

types, namely, boundary nodes that are occupied by the fluid at 

both the present time t and previous time step t − δt, and fresh 

nodes that were covered by the solid body at time t − δt . Gener- 

ally, at a boundary node, the distribution functions with links to 

other fluid nodes are obtained after the streaming step, but those 

with links to solid nodes need to be specified according to certain 

kinetic boundary conditions; unlike boundary nodes, the distribu- 

tion functions at a fresh node are all unknown when it moves into 

the fluid from the solid body and should be initialized with certain 

refilling algorithms. In previous studies [12,13] , the unknown dis- 

tribution functions at boundary nodes and fresh nodes are treated 

with separate rules, which may lead to some inconsistency. In the 

present study, we propose a consistent method to specify the un- 

known distribution functions at both types of nodes. 

After the collision step and streaming step, the distribution 

functions at fluid nodes and boundary nodes with links to other 
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